ISO/IEC 14496-15:2014/Amd.2
INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION
ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11/N14837
Strasbourg, France, October 2014

Title: 	Carriage of AVC based 3D video excluding MVC
Source:	MPEG Systems
Editors: 	Ye-Kui Wang, Miska M. Hannuksela, David Singer
Status: 	PDAM

Error! Reference source not found.

Contents	Page
Foreword	vi
Introduction	vii
1	Scope	2
2	Normative references	2
3	Terms, definitions and abbreviated terms	2
3.1	Terms and definitions	2
3.2	Abbreviated terms	6
4	General Definitions	7
4.1	Introduction	7
4.2	Elementary stream structure	7
4.3	Sample and Configuration definition	7
4.4	Video Track Structure	9
4.5	Template fields used	9
4.6	Visual width and height	10
4.7	Decoding time (DTS) and composition time (CTS)	10
4.8	Sync sample (IDR)	10
4.9	Shadow sync	10
4.10	Sample groups on random access recovery points and random access points	11
4.11	Hinting	11
5	AVC elementary streams and sample definitions	11
5.1	Introduction	11
5.2	Elementary stream structure	12
5.3	Sample and Configuration definition	15
5.4	Derivation from ISO Base Media File Format	20
6	SVC elementary stream and sample definitions	31
6.1	Introduction	31
6.2	Elementary stream structure	31
6.3	Use of the plain AVC file format	32
6.4	Sample and configuration definition	32
6.5	Derivation from the ISO base media file format	34
7	MVC and MVD elementary stream and sample definitions	40
7.1	Introduction	40
7.2	Overview of MVC and MVD Storage	41
7.3	MVC and MVD Track Structures	43
7.4	Use of the plain AVC File Format	44
7.5	Sample and configuration definition	44
7.6	Derivation from the ISO base media file format	48
7.7	MVC specific information boxes	60
8	HEVC elementary streams and sample definitions	68
8.1	Introduction	68
8.2	Elementary Stream Structure	69
8.3	Sample and configuration definition	69
8.4	Derivation from ISO base media file format	73
8.5	HEVC Tile Description	Error! Bookmark not defined.
9	SHVC elementary streams and sample definitions	Error! Bookmark not defined.
9.1	Introduction	Error! Bookmark not defined.
9.2	Elementary stream structure	Error! Bookmark not defined.
9.3	Use of plain HEVC file format	Error! Bookmark not defined.
9.4	Sample and configuration definitions	Error! Bookmark not defined.
9.5	Derivation from the ISO base media file format	Error! Bookmark not defined.
10	MV-HEVC elementary stream and sample definitions	Error! Bookmark not defined.
10.1	Introduction	Error! Bookmark not defined.
10.2	MV-HEVC Track Structure	Error! Bookmark not defined.
10.3	Use of the plain HEVC File Format	Error! Bookmark not defined.
10.4	Sample and configuration definition	Error! Bookmark not defined.
10.5	Derivation from the ISO base media file format	Error! Bookmark not defined.
Annex A (normative) In-stream structures	80
Annex B (normative) SVC, MVC, and MVD sample group and sub-track definitions	85
Annex C (normative) Temporal metadata support	105
Annex D (normative) File format toolsets	113
Annex E (normative) Sub-parameters for the MIME type ‘Codecs’ parameter	114
Annex F (Informative) Patent Statements	115

[bookmark: _Toc374356394][bookmark: _Toc370302942][bookmark: _Toc370303258]Foreword
ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of the joint technical committee is to prepare International Standards. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
ISO/IEC 14496‑15 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.
This third edition cancels and replaces the second edition (ISO/IEC 14496‑15:2010), which has been technically revised. It also incorporates the Amendment ISO/IEC 14496‑15:2010/Amd.1:2011 and the Technical Corrigenda ISO/IEC 14496‑15:2010/Cor.1:2011 and ISO/IEC 14496‑15:2010/Cor.2:2012.
ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of audio-visual objects:
Part 1: Systems
Part 2: Visual
Part 3: Audio
Part 4: Conformance testing
Part 5: Reference software
Part 6: Delivery Multimedia Integration Framework (DMIF)
Part 7: Optimized reference software for coding of audio-visual objects [Technical Report]
Part 8: Carriage of ISO/IEC 14496 contents over IP networks
Part 9: Reference hardware description [Technical Report]
Part 10: Advanced Video Coding
Part 11: Scene description and application engine
Part 12: ISO base media file format
Part 13: Intellectual Property Management and Protection (IPMP) extensions
Part 14: MP4 file format
Part 15: Carriage of network abstraction layer (NAL) unit structured video in the ISO base media file format
Part 16: Animation Framework eXtension (AFX)
Part 17: Streaming text format
Part 18: Font compression and streaming
Part 19: Synthesized texture stream
Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)
Part 21: MPEG-J Graphics Framework eXtension (GFX)
Part 22: Open Font Format
Part 23: Symbolic Music Representation
Part 24: Audio and systems interaction
Part 25: 3D Graphics Compression Model
Part 26: Audio conformance
Part 27: 3D Graphics conformance
[bookmark: _Toc374356395]Part 28: Composite font representation
[bookmark: _Toc370302943][bookmark: _Toc370303259]Introduction
This part of ISO/IEC 14496 defines a storage format based on, and compatible with, the ISO Base Media File Format (ISO/IEC 14496-12 and ISO/IEC 15444-12), which is used by the MP4 file format (ISO/IEC 14496-14) and the Motion JPEG 2000 file format (ISO/IEC 15444-3) among others. This part of ISO/IEC 14496 enables video streams formatted as Network Adaptation Layer Units (NAL Units) to
be used in conjunction with other media streams, such as audio,
be used in an MPEG-4 systems environment, if desired,
be formatted for delivery by a streaming server, using hint tracks, and
inherit all the use cases and features of the ISO Base Media File Format on which MP4 and MJ2 are based.
This part of ISO/IEC 14496 may be used as a standalone specification; it specifies how NAL unit structured video content shall be stored in an ISO Base Media File Format compliant format. However, it is normally used in the context of a specification, such as the MP4 file format, derived from the ISO Base Media File Format, that permits the use of NAL unit structured video such as AVC (ISO/IEC 14496-10) and video and High Efficiency Video Coding (HEVC, ISO/IEC 23008-2) video.
The ISO Base Media File Format is becoming increasingly common as a general-purpose media container format for the exchange of digital media, and its use in this context should accelerate both adoption and interoperability.
The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) draw attention to the fact that it is claimed that compliance with this document may involve the use of a patent.
The ISO and IEC take no position concerning the evidence, validity and scope of this patent right.
The holder of this patent right has assured the ISO and IEC that he is willing to negotiate licences under reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of the holder of this patent right is registered with the ISO and IEC. Information may be obtained from the companies listed in 0.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights other than those identified in 0. ISO and IEC shall not be held responsible for identifying any or all such patent rights.
Error! Reference source not found.
ISO/IEC 14496-15:2014/Amd.2
ISO/IEC 14496-15:2014/Amd.2

	lxxxix
	Error! Reference source not found.

	viii
	
	© ISO/IEC 2014 – All rights reserved

	© ISO/IEC 2014 – All rights reserved
	
	vii

Error! Reference source not found.
[bookmark: _Toc374356396][bookmark: _Toc370302944][bookmark: _Toc370303260]Scope
This part of ISO/IEC 14496 specifies the storage format for streams of video that is structured as NAL Units, such as AVC (ISO/IEC 14496-10) and HEVC (ISO/IEC 23008-2) video streams.
[Ed. (YK&MH): The supports of storage of 3D-AVC, MFC and MFC+D video are missing and should be added.]
[bookmark: _Toc117242266][bookmark: _Toc374356397][bookmark: _Toc232234471][bookmark: _Toc370302945][bookmark: _Toc370303261]Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO/IEC 14496-10, Information technology — Coding of audio-visual objects — Part 10: Advanced Video Coding
ISO/IEC 14496-12, Information technology — Coding of audio-visual objects — Part 12: ISO base media file format[footnoteRef:2]) [2:)	ISO/IEC 14496-12 is technically identical to ISO/IEC 15444-12.]

ISO/IEC 23008-2, Information technology — High efficiency coding and media delivery in heterogeneous environments — Part 2: High efficiency video coding
[bookmark: _Toc117242267][bookmark: _Toc374356398][bookmark: _Toc232234472][bookmark: _Toc370302946][bookmark: _Toc370303262]Terms, definitions and abbreviated terms
[bookmark: _Toc117242268][bookmark: _Toc374356399][bookmark: _Toc232234473][bookmark: _Toc370302947][bookmark: _Toc370303263]Terms and definitions
For the purposes of this document, the terms and definitions given in ISO/IEC 14496-10 or ISO/IEC 23008-2, and the following apply.

aggregator
in-stream structure using a NAL unit header
NOTE	Aggregators are used to group NAL units belonging to the same sample.

AVC base layer
maximum subset of a bitstream that is AVC compatible (i.e. a bitstream not using any of the functionality of ISO/IEC 14496-10 Annex G, Annex H, or Annex I)
NOTE 1	The AVC base layer is represented by AVC VCL NAL units and associated non-VCL NAL units.
NOTE 2	The AVC base layer itself can be a temporal scalable bitstream.

AVC NAL unit
AVC VCL NAL unit and its associated non-VCL NAL units in a bitstream

AVC VCL NAL unit
NAL unit with type 1 to 5 (inclusive) as specified in ISO/IEC 14496-10

depth NAL unit; depth VCL NAL unit
NAL unit with type 21 as specified in ISO/IEC 14496-10 Annex I

extraction path
set of operations on the original bitstream, each yielding a subset bitstream, ordered such that the complete bitstream is first in the set, and the base layer is last, and all the bitstreams are in decreasing complexity (along one of the scalability axes, such as resolution), and where every bitstream is a valid operating point
NOTE	An extraction path may be represented by the values of priority_id in the NAL unit headers. Alternatively an extraction path can be represented by the run of tiers or by a set of hierarchically dependent tracks.

extractor
in-stream structure using a NAL unit header including a NAL unit header extension
NOTE	Extractors contain instructions on how to extract data from other tracks. Logically an Extractor can be seen as a ‘link’. While accessing a track containing Extractors, the Extractor is replaced by the data it is referencing.

in-stream structure
structure residing within sample data

MVC NAL unit
MVC VCL NAL unit and its associated non-VCL NAL units in an MVC stream, as specified in Annex H of ISO/IEC 14496-10

MVC VCL NAL unit
NAL unit with type 20, and NAL units with type 14 when the immediately following NAL units are AVC VCL NAL units, as specified in ISO/IEC 14496-10
NOTE 	MVC VCL NAL units do not affect the decoding process of a legacy AVC decoder.

operating point
independently decodable subset of a scalable bitstream
NOTE 1	Each operating point consists of all the data needed to decode this particular bitstream subset.
NOTE 2	In an SVC stream an operating point can be represented either by (i) specific values of DTQ (dependency_id, temporal_id and quality_id) or (ii) specific values of P (priority_id) or (iii) combinations of them (e.g. PDTQ). Note that the usage of priority_id is defined by the application. In an SVC file a track represents one or more operating points. Within a track tiers may be used to define multiple operating points.
NOTE 3	The bitstream subset of an MVC or MVD operating point represents a particular set of target output views at a particular temporal resolution, and consists of all the data needed to decode this particular bitstream subset. In MVD each target output view in the bitstream subset of an MVD operating point may contain a texture view, a depth view or both.
NOTE 4	An operating point is referred to as an operation point in Annex H of ISO/IEC 14496-10 or in ISO/IEC 23008-2.

[bookmark: _Toc49271093]parameter set
video parameter set, sequence parameter set, or picture parameter set, as defined in the applicable video standard (e.g. ISO/IEC 14496-10 or ISO/IEC 23008-2)
NOTE	This term is used to refer to all types of parameter sets.

[bookmark: _Toc49271094]parameter set elementary stream
elementary stream containing samples made up of only sequence and picture parameter set NAL units synchronized with the video elementary stream

prefix NAL unit
NAL units with type 14 as specified in ISO/IEC 14496-10
NOTE	Prefix NAL units provide scalability information about AVC VCL NAL units and filler data NAL units. Prefix NAL units do not affect the decoding process of a legacy AVC decoder. The behaviour of a legacy AVC file reader as a response to prefix NAL units is undefined.

scalable layer; layer
set of VCL NAL units with the same values of dependency_id, quality_id, and temporal_id, and the associated non-VCL NAL units as specified in ISO/IEC 14496-10
NOTE 1	A scalable layer with any of dependency_id, quality_id, and temporal_id not equal to 0 enhances the video by one or more scalability levels in at least one direction (temporal, quality or spatial resolution)
NOTE 2	SVC uses a “layered” encoder design which results in a bitstream representing “coding layers”. In some publications the ‘base layer’ is the first quality layer of a specific coding layer. In some publications the base layer is the scalable layer with the lowest priority. The SVC file format uses “scalable layer” or “layer” in a general way for describing nested bitstreams (using terms like AVC base layer or SVC enhancement layer).

scalable layer representation
bitstream subset that is required for decoding the scalable layer, consisting of the scalable layer itself and all the scalable layers on which the scalable layer depends
NOTE	A scalable layer representation is also referred to as the representation of the scalable layer.

sub-picture
proper subset of coded slices of a layer representation

sub-picture tier
tier that consists of sub-pictures
NOTE	Any coded slice that is not included in the tier representation of a sub-picture tier is not to be referred to in inter prediction or inter-layer prediction for decoding of the sub-picture tier.

SVC enhancement layer
layer that specifies a part of a scalable bitstream that enhances the video
NOTE 1	An SVC enhancement layer is represented by SVC VCL NAL units and the associated non-VCL NAL units and SEI messages.
NOTE 2	Usually an SVC enhancement layer represents a spatial or coarse-grain scalability (CGS) coding layer (identified by a specific value of dependency_id).

SVC NAL unit
SVC VCL NAL unit and its associated non-VCL NAL units in an SVC stream, as specified in Annex G of ISO/IEC 14496-10

SVC stream
bitstream represented by the operating point for which dependency_id is equal to mDid, temporal_id is the greatest temporal_id value among mOpSet, and quality_id is the greatest quality_id value among mOpSet, where the greatest value of dependency_id of all the operating points represented by DTQ (dependency_id, temporal_id and quality_id) combinations is equal to mDid, and the set of all the operating points with dependency_id equal to mDid is mOpSet.
NOTE	The term “SVC stream” is referenced by ‘decoding/accessing the entire stream’ in this document. There may be NAL units which are not required for decoding this operating point.

SVC VCL NAL unit
NAL unit with type 20, and NAL units with type 14 when the immediately following NAL units are AVC VCL NAL units, as specified in Annex G of ISO/IEC 14496-10
NOTE	SVC VCL NAL units do not affect the decoding process of a legacy AVC decoder.

temporal layer representation
representation of a temporal layer
temporal layer and all lower temporal layers

tier
set of operating points within a track, providing information about the operating points and instructions on how to access the corresponding bitstream portions (using maps and groups)
NOTE 1	A tier represents one or more scalable layers of an SVC bitstream. In the context of ISO/IEC 23008-2 video, the term tier is also used to represent a part of the interoperability point representation consists of profile, tier, and level.
NOTE 2	The term “tier” is used to avoid confusion with the frequently used term layer. A tier represents a subset of a track and represents an operating point of an SVC bitstream. Tiers in a track subset the entire track, no matter whether the track references another track by extractors.
NOTE 3	An MVC or MVD tier represents a particular set of temporal subsets of a particular set of views.

tier representation; representation of the tier
bitstream subset that is required for decoding the tier, consisting of the tier itself and all the tiers on which the tier depends

video elementary stream
elementary stream containing access units made up of NAL units for coded picture data

virtual base view
AVC compatible representation of an independently coded non-base view, as specified in Annex H of ISO/IEC 14496-10
NOTE	The virtual base view of an independently coded non-base view is created according to the process specified in H.8.5.5 of ISO/IEC 14496-10. Samples containing data units of an independently coded non-base view and samples of the virtual base view are aligned by decoding times.
[bookmark: _Toc49271096][bookmark: _Toc117242269][bookmark: _Toc374356400][bookmark: _Toc232234474][bookmark: _Toc370302948][bookmark: _Toc370303264]Abbreviated terms
AVC	Advanced Video Coding. Where contrasted with SVC, MVC, or MVD in this International Standard, this term refers to the main part of ISO/IEC 14496-10, including none of Annex G (Scalable Video Coding), Annex H (Multiview Video Coding), and Annex I (Multiview and Depth Video Coding)
BLA	Broken Link Access
CRA	Clean Random Access
CTU	Coding Tree Unit
HEVC	High Efficiency Video Coding
FF	File Format
HRD	Hypothetical Reference Decoder
IDR	Instantaneous Decoding Refresh
MVC	MultiviewVideo Coding [refers to ISO/IEC 14496‑10 when the techniques in Annex H (Multiview Video Coding) are in use]
MVD	Multiview Video Coding Plus Depth [refers to ISO/IEC 14496‑10 when the techniques in Annex I (Multiview and Depth Video Coding) are in use]
NAL	Network Abstraction Layer
PPS	Picture Parameter Set
ROI	Region-Of-Interest
SEI	Supplementary Enhancement Information
SPS	Sequence Parameter Set
STSA	Step-wise Temporal Sub-layer Access
SVC	Scalable Video Coding [refers to ISO/IEC 14496‑10 when the techniques in Annex G (Scalable Video Coding) are in use]
TSA	Temporal Sub-layer Access
VCL	Video Coding Layer
VPS	Video Parameter Set
[bookmark: _Toc374356401][bookmark: _Toc232234475][bookmark: _Toc370302949][bookmark: _Toc370303265]General Definitions
[Ed. (YK): Some parts here (e.g. on sync sample) are AVC specific - those should be made generic, and if needed, e.g. on sync sample, AVC specific stuff are moved to clause 5.]
[bookmark: _Toc49271098][bookmark: _Toc117242271][bookmark: _Toc374356402][bookmark: _Toc232234476][bookmark: _Toc370302950][bookmark: _Toc370303266][bookmark: _Toc15466321]Introduction
The specifications in this clause apply to all coding systems identified by chapters in this specification, unless specifically over-ridden by definitions in the clause for a specific coding system.
The following table summarizes the correspondences between the sets of terminology used in video specifications and the ISO Base Media File Format.
[bookmark: _Ref201136033]Table 1 – Correspondence of terms in video and ISO Base Media File Format
	Video
	ISO Base Media File Format

	-
	Movie

	Bitstream
	Track

	Access Unit
	Sample

[bookmark: _Toc374356403][bookmark: _Toc232234477][bookmark: _Toc370302951][bookmark: _Toc370303267]Elementary stream structure
This specification concerns video coding systems that specify a set of Network Abstraction Layer (NAL) units, which contain different types of data. This subclause specifies the format of the elementary streams for storing such content.
[bookmark: _Toc374356404][bookmark: _Toc232234478][bookmark: _Toc370302952][bookmark: _Toc370303268]Sample and Configuration definition
Introduction
Sample: A sample is an access unit or a part of an access unit (e.g. in an MVC or MVD track), where an access unit is as defined in the appropriate specification.
Parameter set sample: A parameter set sample is a sample in a parameter set stream which shall consist of those parameter set NAL units that are to be considered as if present in the video elementary stream at the same instant in time.
[bookmark: _Ref201392933]Canonical order and restrictions
The elementary stream is stored in the ISO Base Media File Format in a canonical format. The canonical format is as neutral as possible so that systems that need to customize the stream for delivery over different transport protocols — MPEG-2 Systems, RTP, and so on — should not have to remove information from the stream while being free to add to the stream. Furthermore, a canonical format allows such operations to be performed against a known initial state.
The canonical stream format is an elementary stream that satisfies the following conditions:
Video data NAL units: All video data NAL units for a single picture shall be contained with the sample whose decoding time and composition time are those of the picture. Each sample shall contain at least one video data NAL unit of the primary picture.
SEI NAL units: All SEI NAL units shall be contained in the parameter set arrays, or in the sample whose decoding time is at the time, or immediately precedes the time (with no intervening samples), when the SEI messages come into effect instantaneously. In general, SEI messages for a picture shall be included in the sample containing that picture and that SEI messages pertaining to a sequence of pictures shall be included in the sample containing the first picture of the sequence to which the SEI message pertains. The order of SEI messages within a sample is as defined in the applicable video coding standard.
NAL unit order: The sequence of NAL units in an elementary stream and within a single sample must be in a valid decoding order for those NAL units as specified in the applicable video coding standard.
All timing information is external to stream. Picture Timing SEI messages that define presentation or composition timestamps may be included in the video elementary stream, as these messages contain other information than timing, and may be required for conformance checking. However, all timing information is provided by the information stored in the various sample metadata tables, and this information over-rides any timing provided in the video layer. Timing provided within the video stream in this file format should be ignored as it may contradict the timing provided by the file format and may not be correct or consistent within itself.
NOTE	This constraint is imposed due to the fact that post-compression editing, combination, or re-timing of a stream at the file format level may invalidate or make inconsistent any embedded timing information present within the video stream.
No start codes. The elementary streams shall not include start codes. As stored, each NAL unit is preceded by a length field as specified in 4.3.3; this enables easy scanning of the sample’s NAL units. Systems that wish to deliver, from this file format, a stream using start codes will need to reformat the stream to insert those start codes.
[bookmark: _Ref201202980]Sample format
Definition
This subclause defines the structure of the samples. Samples are externally framed and have a size supplied by that external framing. The syntax of a sample is configured via the decoder specific configuration for the elementary stream. An example of the structure of a video sample is depicted in the following figure.
[image:]
[bookmark: _Ref358373540]Figure 1 — Example structure of a sample
An access unit is made up of a set of NAL units. Each NAL unit is represented with a:
Length: Indicates the length in bytes of the following NAL unit. The length field can be configured to be of 1, 2, or 4 bytes.
NAL Unit: Contains the NAL unit data as specified in the applicable video coding standard.
Syntax
aligned(8) class NALUSample
{
	unsigned int PictureLength = sample_size; //Size of Sample from SampleSizeBox
	for (i=0; i<PictureLength;)		// to end of the picture
	{
		unsigned int((DecoderConfigurationRecord.LengthSizeMinusOne+1)*8)
			NALUnitLength;
		bit(NALUnitLength * 8) NALUnit;
		i += (DecoderConfigurationRecord.LengthSizeMinusOne+1) + NALUnitLength;
	}
}
Semantics
DecoderConfigurationRecord indicates the record in the matching sample entry (e.g. AVCDecoderConfigurationRecord in the case of AVC)
NALUnitLength indicates the size of a NAL unit measured in bytes. The length field includes the size of both the one byte NAL header and the RBSP payload but does not include the length field itself.
NALUnit contains a single NAL unit. The syntax of a NAL unit is defined in the appropriate specification (e.g. ISO/IEC 14496-10) and includes both the one byte NAL header and the variable length encapsulated byte stream payload.
[bookmark: _Toc374356405][bookmark: _Toc232234479][bookmark: _Toc370302953][bookmark: _Toc370303269]Video Track Structure
In the terminology of ISO/IEC 14496-12, both video and parameter set tracks are video or visual tracks. They therefore use:
1. a handler_type of ‘vide’ in the HandlerBox;
1. a video media header ‘vmhd’;
1. and, as defined below, a derivative of the VisualSampleEntry.
A video stream is represented by one or more video tracks in a file.
If there is more than one track representing scalable aspects of a single stream, then they form alternatives to each other, and the field ‘alternate_group’ should be used, or the composition system used should select one of them, as appropriate. See 8.10.3 “Track Selection Box” of ISO/IEC 14496-12 for informative labelling of why tracks are members of alternate groups.
[bookmark: _Toc374356406][bookmark: _Toc232234480][bookmark: _Toc370302954][bookmark: _Toc370303270]Template fields used
The ISO Base Media File Format defines a number of fields which have default values but which may be defined for use by specific sub-systems. Tracks containing video data may use the following template fields:
a) alternate_group in the TrackHeaderBox (see 5.4.6 on stream switching).
b) template field ‘depth’ in the VisualSampleEntry to document the presence of alpha.
depth takes one of the following values
	0x18 – the video sequence is in colour with no alpha
	0x28 – the video sequence is in grayscale with no alpha
	0x20 – the video sequence has alpha (gray or colour)
[bookmark: _Toc374356407][bookmark: _Toc232234481][bookmark: _Toc370302955][bookmark: _Toc370303271]Visual width and height
The width and height fields in a VisualSampleEntry must correctly document the cropped frame dimensions (visual presentation size) of the video stream that is described by that entry. The width and height fields do not reflect any changes in size caused by SEI messages such as pan-scan. The visual handling of SEI messages such as pan-scan is both optional and terminal-dependent. If the width or height of the sequence changes, then a new sample entry is needed.
Note that the visual size in the SPS may be either frame or field size; in the sample entry, it is always the frame size.
The width and height fields in the track header may not be the same as the width and height fields in the one or more VisualSampleEntry in the video track. As specified in the ISO Base Media File Format, if normalized visual presentation is needed, all the sequences are normalized to the track width and height for presentation.
[bookmark: _Toc374356408][bookmark: _Toc232234482][bookmark: _Toc370302956][bookmark: _Toc370303272]Decoding time (DTS) and composition time (CTS)
Samples are stored in the file format in decoding order. If picture reordering is not used and decoding and composition times are the same, then presentation is the same as decoding order and only the time-to-sample ‘stts’ table is used. Note that any kind of picture may be reordered, not only B-pictures.
If decoding time and composition time differ, the composition time-to-sample ‘ctts’ table is also used in conjunction with the 'stts' table.
[bookmark: _Toc374356409][bookmark: _Toc232234483][bookmark: _Toc370302957][bookmark: _Toc370303273]Sync sample (IDR)
A sample is considered as a sync sample if ALL of the following conditions are met:
The video data NAL units in the sample indicate that the primary picture contained in the sample is an instantaneous decoding refresh (IDR) picture.
When the sample entry name is 'avc1' or 'avc2', all SPSs and PPSs needed to decode the video data NAL units in the sample of the IDR picture and the following samples in decode order are contained in the decoder configuration of the video elementary stream or in a separate parameter set elementary stream sample.
When the sample entry name is 'avc3' or 'avc4', the following applies:
1. If the sample is an IDR access unit, all parameter sets needed for decoding that sample shall be included either in the sample entry or in the sample itself.
2. Otherwise (the sample is not an IDR access unit), all parameter sets needed for decoding the sample shall be included either in the sample entry or in any of the samples since the previous random access point to the sample itself, inclusive.
A parameter set elementary stream sample is a sync sample if and only if all parameter sets required by the associated video elementary stream from the time of the parameter set sample forward are supplied, in the parameter set stream, before they are required by the associated video elementary stream.
[bookmark: _Toc358375624][bookmark: _Toc374356410][bookmark: _Toc232234484][bookmark: _Toc370302958][bookmark: _Toc370303274]Shadow sync
The use of the shadow sync table to indicate alternate encodings of a sample for random access are supported as defined in the ISO Base Media File Format. A shadow sync shall indicate a sample that is a random access point as specified in the general requirements and for the specific coding format in the track.
While the use of shadow sync is supported for backward compatibility reasons, this use is deprecated and use of the mechanisms defined in 5.4.6 is recommended.
[bookmark: _Toc374356411][bookmark: _Toc232234485][bookmark: _Toc370302959][bookmark: _Toc370303275]Sample groups on random access recovery points and random access points
The video coding system can include the concept of a ‘gradual decoding refresh’ or random access recovery point. This may be signalled in the bit-stream using a mechanism such as the recovery point SEI message. This message is found at the beginning of the random access, and indicates how much data must be decoded subsequent to the access unit at the position of the SEI message before the recovery is complete.
When all access units in output order starting from the access unit at the position of the SEI message can be successfully decoded after random access, i.e. when the recovery_frame_cnt syntax element of the recovery point SEI message is 0, the Random Access Point (‘rap ‘) sample grouping should be used.
This concept of gradual recovery is supported in the file format also by using RollRecoveryEntry Groups [4.5]. In order that the group membership marks the sample containing the SEI message the ‘roll-distance’ is constrained to being only positive (i.e. a post-roll). In other words, RollRecoveryEntry Groups can be used when the value of the recovery_frame_cnt syntax element of the recovery point SEI message is greater than 0.
Note – The roll-group counts samples in the file format; this may not match the way that the distances are represented in the SEI message.
Within a stream, it is necessary to mark the beginning of the pre-roll, so that a stream decoder may start decoding there. However, in a file, when performing random access, a deterministic search is desired for the closest preceding frame which can be decoded perfectly (either a sync sample, or the end of a pre-roll).
[bookmark: _Toc374356412][bookmark: _Toc232234486][bookmark: _Toc370302960][bookmark: _Toc370303276]Hinting
Note that what the hint tracks call “B frames” are actually ‘disposable’ pictures or non-reference pictures, for example as defined in ISO/IEC 14496-10.
Care should be taken when the structures in Annex A (aggregators or extractors) are in use and the track is hinted. These structures are defined only for use in the file format and should not be transmitted. In particular, a hint track that points at an extractor in a video track would cause the extractor itself to be transmitted (which is probably both incorrect and not the desired behaviour), not the data the extractor references. Hint tracks should normally directly reference NAL units specified in the applicable video coding standard.
[bookmark: _Toc49271109][bookmark: _Toc117242277][bookmark: _Ref201136857][bookmark: _Ref232066481][bookmark: _Ref232066492][bookmark: _Ref232066579][bookmark: _Ref374352065][bookmark: _Toc374356413][bookmark: _Toc232234487][bookmark: _Toc370302961][bookmark: _Toc370303277]AVC elementary streams and sample definitions
[bookmark: _Toc374356414][bookmark: _Toc232234488][bookmark: _Toc370302962][bookmark: _Toc370303278]Introduction
The Advanced Video Coding (AVC) standard, jointly developed by the ITU-T and ISO/IEC JTC 1/SC 29/WG 11 (MPEG), offers not only increased coding efficiency and enhanced robustness, but also many features for the systems that use it. To enable the best visibility of, and access to, those features, and to enhance the opportunities for the interchange and interoperability of media, this clause of this part of ISO/IEC 14496 defines a storage format for video streams compressed using AVC.
This clause defines the storage for plain AVC streams, where ‘plain AVC’ refers to the main part of ISO/IEC 14496-10, excluding Annex G (Scalable Video Coding), Annex H (Multiview Video Coding), and Annex I (Multiview and Depth Video Coding).
[bookmark: _Toc49271110][bookmark: _Ref117241333][bookmark: _Toc117242278][bookmark: _Ref117243923]This clause specifies the elementary stream and sample structure used to store AVC visual content.
The storage of AVC content uses the existing capabilities of the ISO base media file format but also defines extensions to support the following features of the AVC codec.
Switching pictures:
to enable switching between different coded streams and substitution of pictures within the same stream.
Sub-sequences and layers:
provides a structuring of the dependencies of a group of pictures to provide for a flexible stream structure (e.g. in terms of temporal scalability and layering).
Parameter sets:
the sequence and picture parameter set mechanism decouples the transmission of infrequently changing information from the transmission of coded macroblock data. Each slice containing the coded macroblock data references the picture parameter set containing its decoding parameters. In turn, the picture parameter set references a sequence parameter set that contains sequence level decoding parameter information.
[bookmark: _Ref252433928][bookmark: _Ref252435865][bookmark: _Toc374356415][bookmark: _Toc232234489][bookmark: _Toc370302963][bookmark: _Toc370303279]Elementary stream structure
Two types of elementary streams are defined for storing AVC content (see also Figure 2):
Video Elementary Streams shall contain all video coding related NAL units (i.e. those NAL units containing video data or signaling video structure) and may contain non-video coding related NAL units such as SEI messages and access unit delimiter NAL units. Other NAL units that are not expressly prohibited may be present, and if they are unrecognized should be ignored (e.g. not placed in the output buffer while accessing the file).
Parameter set elementary streams shall not contain video coding related NAL units (i.e. those NAL units containing video data or signalling video structure), and would normally contain only sequence parameter sets, picture parameter sets and sequence parameter set extension NAL units.
Using these stream types, AVC content shall be stored in one of these configurations:
Video elementary stream with no parameter sets: In this case, sequence and picture parameter set NAL units shall be stored in the sample entries of this track. Sequence and picture parameter set NAL units shall not be part of AVC samples within the stream itself.
Video elementary stream possibly including parameter sets: In this case, the sample entry indicates whether the stream may contain parameter sets of given types, in addition to other parameters provided in the sample entry. Sequence and picture parameter set NAL units may therefore be part of AVC samples within the stream itself.
Video elementary stream and parameter set elementary stream: In this case, sequence and picture parameter set NAL units shall be transmitted only in the parameter set elementary stream and shall neither be present in the sample entries nor the AVC samples of the video elementary stream.
The types of NAL units that are allowed in each of the video and parameter set elementary streams are specified in the following table.
[bookmark: _Ref358372081][bookmark: _Ref117241353][bookmark: _Ref358366562][bookmark: _Ref117241362]Table 2 – NAL Unit types in elementary Streams
	Value of nal_unit_type
	Description
	Video elementary stream (sample entry 'avc1' or 'avc2')
	Video elementary stream (sample entry 'avc3' or 'avc4')
	Parameter set elementary stream

	0
	Unspecified
	Not specified by this part of ISO/IEC 14496
	Not specified by this part of ISO/IEC 14496
	Not specified by this part of ISO/IEC 14496

	1
	Coded slice of a non-IDR picture
slice_layer_without_partitioning_rbsp()
	Yes
	Yes
	No

	2
	Coded slice data partition A slice_data_partition_a_layer_rbsp()
	Yes
	Yes
	No

	3
	Coded slice data partition B slice_data_partition_b_layer_rbsp()
	Yes
	Yes
	No

	4
	Coded slice data partition C slice_data_partition_c_layer_rbsp()
	Yes
	Yes
	No

	5
	Coded slice of an IDR picture
slice_layer_without_partitioning_rbsp()
	Yes
	Yes
	No

	6
	Supplemental enhancement information(SEI)
sei_rbsp()
	Yes.
Except for the Sub-sequence, layering or Filler SEI messages
	Yes
Except for the Sub-sequence, or layering SEI messages
	Only ‘declarative’ SEIs should be present

	7
	Sequence parameter set (SPS)
seq_parameter_set_rbsp()
	No.
If parameter set elementary stream is not used, SPS shall be stored in the Decoder Specific Information.
	Yes
Parameter set elementary stream shall not be used
	Yes

	8
	Picture parameter set (PPS)
pic_parameter_set_rbsp()
	No.
If parameter set elementary stream is not used, PPS shall be stored in the Decoder Specific Information.
	Yes
Parameter set elementary stream shall not be used
	Yes

	9
	Access unit delimiter (AU Delimiter)
access_unit_delimiter_rbsp()
	Yes
	Yes
	No

	10
	End of sequence
end_of_seq_rbsp()
	Yes
	Yes
	No

	11
	End of stream
end_of_stream_rbsp()
	Yes
	Yes
	No

	12
	Filler data (FD)
filler_data_rbsp()
	No
	Yes
	No

	13
	Sequence parameter set extension
seq_parameter_set_extension_rbsp()
	No.
If parameter set elementary stream is not used, Sequence Parameter Set Extension shall be stored in the Decoder Specific Information.
	Yes
Parameter set elementary stream shall not be used
	Yes

	14…18
	Reserved
	Not specified by this part of ISO/IEC 14496
	Not specified by this part of ISO/IEC 14496
	Not specified by this part of ISO/IEC 14496

	19
	Coded slice of an auxiliary coded picture without partitioning
slice_layer_without_partitioning_rbsp()
	Yes
	Yes
	No

	20…23
	Reserved
	Not specified by this part of ISO/IEC 14496
	Not specified by this part of ISO/IEC 14496
	Not specified by this part of ISO/IEC 14496

	24 – 31
	Unspecified
	Not specified by this part of ISO/IEC 14496
	Not specified by this part of ISO/IEC 14496
	Not specified by this part of ISO/IEC 14496

[image:]
(a)	Single video elementary stream containing NAL units
[image:]
[bookmark: _Ref7862322](b)	Synchronized video and parameter sets with arrows denoting synchronization between streams
[bookmark: _Hlt47926807][bookmark: _Ref201136263][bookmark: _Ref358373855][bookmark: _Ref358375491][bookmark: _Ref358365809][bookmark: _Ref14152582][bookmark: _Ref201136281]Figure 2 — AVC elementary stream structure
[bookmark: _Toc15466295][bookmark: _Ref29625789][bookmark: _Ref29625808][bookmark: _Ref440950641][bookmark: _Toc49271111][bookmark: _Toc117242279][bookmark: _Toc374356416][bookmark: _Toc232234490][bookmark: _Toc370302964][bookmark: _Toc370303280]Sample and Configuration definition
[bookmark: _Toc49271112][bookmark: _Toc117242280]Introduction
AVC sample: An AVC sample is an access unit as defined in ISO/IEC 14496-10, 7.4.1.2.
AVC parameter set sample: An AVC parameter set sample is a sample in a parameter set stream which shall consist of those parameter set NAL units that are to be considered as if present in the video elementary stream at the same instant in time.
[bookmark: _Toc15466311][bookmark: _Toc49271113][bookmark: _Ref117241596][bookmark: _Toc117242281][bookmark: _Ref117244202]Canonical order and restrictions
The canonical stream format is an AVC elementary stream that satisfies the following conditions in addition to the general conditions in 4.3.2:
Video data NAL units (Coded Slice, Coded Slice Data Partition A, Coded Slice Data Partition B, Coded Slice Data Partition C, Coded Slice IDR Pictures): All slice and data partition NAL units for a single picture shall be contained with the sample whose decoding time and composition time are those of the picture.
Parameter sets: If a parameter set elementary stream is used, then the sample in the parameter stream shall have a decoding time equal or prior to when the parameter set(s) comes into effect instantaneously. This means that for a parameter set to be used in a picture it must be sent prior to the sample containing that picture or in the sample for that picture.
NOTE	 – When the sample entry name is 'avc1' or 'avc2', parameter sets are stored either in the sample entries of the video stream or in the parameter set stream, but never in both. This ensures that it is not necessary to examine every part of the video elementary stream to find relevant parameter sets. It also avoids dependencies of indefinite duration between the sample that contains the parameter set definition and the samples that use it. Storing parameter sets in the sample entries of a video stream provides a simple and static way to supply parameter sets. Parameter set elementary streams on the other hand are more complex but allow for more dynamism in the case of updates. Parameter sets may be inserted into the video elementary stream when the file is streamed over a transport that permits such parameter set updates. When the sample entry name is 'avc3' or 'avc4', then parameter sets may be present both the sample entries and as part of the samples.
Parameter set track: A sync sample in a parameter set track indicates that all parameter sets needed from that (decoding) time forward in the video elementary stream are in that or succeeding parameter stream samples. Also there shall be a parameter set sample at each point a parameter set is updated. Each parameter set sample shall contain exactly the sequence and picture parameter sets needed to decode the relevant section of the video elementary stream.
NOTE	The use of a parameter set track in the file format does not require that a system delivering video content use a separate elementary stream for parameter sets. Instead, implementations may choose to map parameter sets to in-band parameter set NAL units in the video elementary stream or use some out-of-band delivery mechanism defined by the transport layer.
SEI message NAL units: The order of SEI messages within a sample is as defined in ISO/IEC 14496-10, 7.4.1.2.
Access unit delimiter NAL units: The constraints obeyed by access unit delimiter NAL units are defined in ISO/IEC 14496-10, 7.4.1.2.3.
Sub-sequence and layering SEI messages. Sub-sequence or layering SEI messages shall not occur in the AVC elementary stream. Specifically, the sub-sequence information, sub-sequence layer characteristics, and sub-sequence characteristics SEI messages shall not occur in the stored AVC video elementary stream. Instead, all such information is stored as external metadata as described in 5.4.5.
Redundant picture: NAL units within a single access unit shall be ordered in non-decreasing order of redundant picture count (redundant_pic_cnt).
Slice groups: NAL units within a primary coded picture or a redundant coded picture shall be ordered in non-decreasing order of slice group identifier. Within the same slice group, slices shall be ordered by their first Macroblock location (first_mb_in_slice in the slice header).
NOTE	Slice groups are stored in a canonical order to ease hinting, and to make it easier to find a primary picture within a sample.
Filler data. Video data is naturally represented as variable bit rate in the file format and should be filled for transmission if needed. Filler Data NAL units and Filler Data SEI messages shall not be present in the file format stored stream when the sample entry does not also permit parameter sets.
NOTE	The removal or addition of Filler Data NAL units, start codes, SEI messages or Filler Data SEI messages may change the bit-stream characteristics with respect to conformance with the HRD when operating the HRD in CBR mode as specified in ISO/IEC 14496-10, Annex C.
[bookmark: _Hlt47927734][bookmark: _Hlt47928077][bookmark: _Ref458576897][bookmark: _Toc49271115][bookmark: _Toc117242283]Decoder configuration information
[bookmark: _Hlt47927684][bookmark: _Ref33838409]This subclause specifies the decoder configuration information for ISO/IEC 14496-10 video content.
[bookmark: _Ref252432701]AVC decoder configuration record
Definition
This record contains the size of the length field used in each sample to indicate the length of its contained NAL units as well as the initial parameter sets. This record is externally framed (its size must be supplied by the structure which contains it).
This record contains a version field. This version of the specification defines version 1 of this record. Incompatible changes to the record will be indicated by a change of version number. Readers must not attempt to decode this record or the streams to which it applies if the version number is unrecognised.
Compatible extensions to this record will extend it and will not change the configuration version code. Readers should be prepared to ignore unrecognised data beyond the definition of the data they understand (e.g. after the parameter sets in this specification).
When used to provide the configuration of
a parameter set elementary stream,
a video elementary stream used in conjunction with a parameter set elementary stream,
the configuration record shall contain no sequence or picture parameter sets (numOfSequenceParameterSets and numOfPictureParameterSets shall both have the value 0).
When used to provide the configuration of a video elementary stream used without a parameter set elementary stream, the configuration record may or may not contain sequence or picture parameter sets (numOfSequenceParameterSets or numOfPictureParameterSets may or may not have the value 0).
The values for AVCProfileIndication, AVCLevelIndication, and the flags which indicate profile compatibility must be valid for all parameter sets of the stream described by this record. The level indication must indicate a level of capability equal to or greater than the highest level indicated in the included parameter sets; each profile compatibility flag may only be set if all the included parameter sets set that flag. The profile indication must indicate a profile to which the entire stream associated with this configuration record conforms. If the sequence parameter sets are marked with different profiles, and the relevant profile compatibility flags are all zero, then the stream may need examination to determine which profile, if any, the entire stream conforms to. If the entire stream is not examined, or the examination reveals that there is no profile to which the entire stream conforms, then the stream must be split into two or more sub-streams with separate configuration records in which these rules can be met.
Explicit indication can be provided in the AVC Decoder Configuration Record about the chroma format and bit depth used by the avc video elementary stream. The parameter ‘chroma_format_idc’ present in the sequence parameter set in AVC specifies the chroma sampling relative to the luma sampling. Similarly the parameters ‘bit_depth_luma_minus8’ and ‘bit_depth_chroma_minus8’ in the sequence parameter set specify the bit depth of the samples of the luma and chroma arrays. The values of chroma_format_idc, bit_depth_luma_minus8’ and ‘bit_depth_chroma_minus8’ must be identical in all sequence parameter sets in a single AVC configuration record. If two sequences differ in any of these values, two different AVC configuration records will be needed. If the two sequences differ in color space indications in their VUI information, then two different configuration records are also required.
The array of sequence parameter sets, and the array of picture parameter sets, may contain SEI messages of a ‘declarative’ nature, that is, those that provide information about the stream as a whole. An example of such an SEI is a user-data SEI. Such SEIs may also be placed in a parameter set elementary stream. NAL unit types that are reserved in ISO/IEC 14496-10 and in this specification may acquire a definition in future, and readers should ignore NAL units with reserved values of NAL unit type when they are present in these arrays.
NOTE - this ‘tolerant’ behaviour is designed so that errors are not raised, allowing the possibility of backwards-compatible extensions to these arrays in future specifications.
When Sequence Parameter Set Extension NAL units occur in this record in profiles other than those indicated for the array specific to such NAL units (profile_idc not equal to any of 100, 110, 122, 144), they should be placed in the Sequence Parameter Set Array.
NOTE – the profile identified by profile_idc value 144 is deprecated in ISO/IEC 14496-10.
Syntax
aligned(8) class AVCDecoderConfigurationRecord {
	unsigned int(8) configurationVersion = 1;
	unsigned int(8) AVCProfileIndication;
	unsigned int(8) profile_compatibility;
	unsigned int(8) AVCLevelIndication;
	bit(6) reserved = ‘111111’b;
	unsigned int(2) lengthSizeMinusOne;
	bit(3) reserved = ‘111’b;
	unsigned int(5) numOfSequenceParameterSets;
	for (i=0; i< numOfSequenceParameterSets; i++) {
		unsigned int(16) sequenceParameterSetLength ;
		bit(8*sequenceParameterSetLength) sequenceParameterSetNALUnit;
	}
	unsigned int(8) numOfPictureParameterSets;
	for (i=0; i< numOfPictureParameterSets; i++) {
		unsigned int(16) pictureParameterSetLength;
		bit(8*pictureParameterSetLength) pictureParameterSetNALUnit;
	}
	if(profile_idc == 100 || profile_idc == 110 ||
	 profile_idc == 122 || profile_idc == 144)
	{
		bit(6) reserved = ‘111111’b;
		unsigned int(2) chroma_format;
		bit(5) reserved = ‘11111’b;
		unsigned int(3) bit_depth_luma_minus8;
		bit(5) reserved = ‘11111’b;
		unsigned int(3) bit_depth_chroma_minus8;
		unsigned int(8) numOfSequenceParameterSetExt;
		for (i=0; i< numOfSequenceParameterSetExt; i++) {
			unsigned int(16) sequenceParameterSetExtLength;
			bit(8*sequenceParameterSetExtLength) sequenceParameterSetExtNALUnit;
		}
	}
}
Semantics
AVCProfileIndication contains the profile code as defined in ISO/IEC 14496-10.
profile_compatibility is a byte defined exactly the same as the byte which occurs between the profile_IDC and level_IDC in a sequence parameter set (SPS), as defined in ISO/IEC 14496-10.
AVCLevelIndication contains the level code as defined in ISO/IEC 14496-10.
lengthSizeMinusOne indicates the length in bytes of the NALUnitLength field in an AVC video sample or AVC parameter set sample of the associated stream minus one. For example, a size of one byte is indicated with a value of 0. The value of this field shall be one of 0, 1, or 3 corresponding to a length encoded with 1, 2, or 4 bytes, respectively.
numOfSequenceParameterSets indicates the number of SPSs that are used as the initial set of SPSs for decoding the AVC elementary stream.
sequenceParameterSetLength indicates the length in bytes of the SPS NAL unit as defined in ISO/IEC 14496-10.
sequenceParameterSetNALUnit contains a SPS NAL unit, as specified in ISO/IEC 14496-10. SPSs shall occur in order of ascending parameter set identifier with gaps being allowed.
numOfPictureParameterSets indicates the number of picture parameter sets (PPSs) that are used as the initial set of PPSs for decoding the AVC elementary stream.
pictureParameterSetLength indicates the length in bytes of the PPS NAL unit as defined in ISO/IEC 14496-10.
pictureParameterSetNALUnit contains a PPS NAL unit, as specified in ISO/IEC 14496-10. PPSs shall occur in order of ascending parameter set identifier with gaps being allowed.
chroma_format contains the chroma_format indicator as defined by the chroma_format_idc parameter in ISO/IEC 14496-10.
bit_depth_luma_minus8 indicates the bit depth of the samples in the Luma arrays. For example, a bit depth of 8 is indicated with a value of zero (BitDepth = 8 + bit_depth_luma_minus8). The value of this field shall be in the range of 0 to 4, inclusive.
bit_depth_chroma_minus8 indicates the bit depth of the samples in the Chroma arrays. For example, a bit depth of 8 is indicated with a value of zero (BitDepth = 8 + bit_depth_chroma_minus8). The value of this field shall be in the range of 0 to 4, inclusive.
numOfSequenceParameterSetExt indicates the number of Sequence Parameter Set Extensions that are used for decoding the AVC elementary stream.
sequenceParameterSetExtLength indicates the length in bytes of the SPS Extension NAL unit as defined in ISO/IEC 14496-10.
[bookmark: _Toc49271116][bookmark: _Toc117242284]sequenceParameterSetExtNALUnit contains a SPS Extension NAL unit, as specified in ISO/IEC 14496-10.
[bookmark: _Toc374356417][bookmark: _Toc232234491][bookmark: _Toc370302965][bookmark: _Toc370303281]Derivation from ISO Base Media File Format
[bookmark: _Toc49271118][bookmark: _Toc117242286][bookmark: _Toc15466310]AVC File type and identification
Conformance with this part of ISO/IEC 14496 is indicated by the presence of the brand of a specification that permits the inclusion of AVC content, in the compatible brands list of the FileTypeBox as defined in ISO/IEC 14496-12. The file extension normally matches the major brand.
AVC content may be used in an MPEG-4 context; in a file with extension “.mp4”, the major brand may be ‘avc1’.
Readers conformant to this part of ISO/IEC 14496 should read the file if a suitable brand occurs in the compatible-brands list. Other structures and/or track types, defined in specifications other than that identified by the brand, may be present, and these may be ignored by a reader conformant with the specification identified by the brand.
[bookmark: _Toc49271120][bookmark: _Toc117242288][bookmark: _Toc15466317][bookmark: _Toc15466313]AVC Video Stream Definition
This subclause defines the sample entry and sample format for AVC video elementary streams.
Sample entry name and format
Definition
Sample Entry and Box Types:	 ‘avc1’, ‘avc2’, 'avc3', 'avc4', ‘avcC’, ‘m4ds’,’btrt’
Container:	Sample Description Box (‘stsd’)
Mandatory:	An ‘avc1’, ‘avc2’, 'avc3' or 'avc4' sample entry is mandatory
Quantity:	One or more sample entries may be present
An AVC visual sample entry shall contain an AVC Configuration Box, as defined below. This includes an AVCDecoderConfigurationRecord, as defined in 5.3.3.1.
An optional MPEG4BitRateBox may be present in the AVC visual sample entry to signal the bit rate information of the AVC video stream. Extension descriptors that should be inserted into the Elementary Stream Descriptor, when used in MPEG-4, may also be present.
Multiple sample entries may be used, as permitted by the ISO Base Media File Format specification, to indicate sections of video that use different configurations or parameter sets.
[bookmark: _Hlt201207827]The sample entry name ‘avc1’ or 'avc3' may only be used when the stream to which this sample entry applies is a compliant and usable AVC stream as viewed by an AVC decoder operating under the configuration (including profile and level) given in the AVCConfigurationBox. The file format specific structures that resemble NAL units (see Annex A) may be present but must not be used to access the AVC base data; that is, the AVC data must not be contained in Aggregators (though they may be included within the bytes referenced by the additional_bytes field) nor referenced by Extractors.
The sample entry name ‘avc2’ or 'avc4' may only be used when Extractors or Aggregators (Annex A) are required to be supported, and an appropriate Toolset is required (for example, as indicated by the file-type brands). This sample entry type indicates that, in order to form the intended AVC stream, Extractors must be replaced with the data they are referencing, and Aggregators must be examined for contained NAL Units. Tier grouping may be present.
Syntax
	// Visual Sequences
class AVCConfigurationBox extends Box(‘avcC’) {
	AVCDecoderConfigurationRecord() AVCConfig;
}
class MPEG4BitRateBox extends Box(‘btrt’) {
	unsigned int(32) bufferSizeDB;
	unsigned int(32) maxBitrate;
	unsigned int(32) avgBitrate;
}
[bookmark: _GoBack]class MPEG4ExtensionDescriptorsBox extends Box(‘m4ds’) {
	Descriptor Descr[0 .. 255];
}
class AVCSampleEntry() extends VisualSampleEntry(type) {
															// type is ‘avc1’ or 'avc3'
	AVCConfigurationBox	config;
	MPEG4BitRateBox (); 					// optional
	MPEG4ExtensionDescriptorsBox ();	// optional
	extra_boxes				boxes;				// optional
}
class AVC2SampleEntry() extends VisualSampleEntry(type) {
															// type is ‘avc2’ or 'avc4'
	AVCConfigurationBox	avcconfig;
	MPEG4BitRateBox bitrate; 					// optional
	MPEG4ExtensionDescriptorsBox descr;	// optional
	extra_boxes				boxes;				// optional
}
Semantics
Compressorname in the base class VisualSampleEntry indicates the name of the compressor used with the value "\012AVC Coding" being recommended; the first byte is a count of the remaining bytes, here represented by \012, which (being octal 12) is 10 (decimal), the number of bytes in the rest of the string.
config is defined in 5.3.3. If a separate parameter set stream is used, numOfSequenceParameterSets and numOfPictureParameterSets must both be zero.
Descr is a descriptor which should be placed in the ElementaryStreamDescriptor when this stream is used in an MPEG-4 systems context. This does not include SLConfigDescriptor or DecoderConfigDescriptor, but includes the other descriptors in order to be placed after the SLConfigDescriptor.
bufferSizeDB gives the size of the decoding buffer for the elementary stream in bytes.
maxBitrate gives the maximum rate in bits/second over any window of one second.
avgBitrate gives the average rate in bits/second over the entire presentation.
[bookmark: _Toc49271121][bookmark: _Toc117242289]AVC parameter set stream definition
Sample entry name and format
Definition
Box Types:	 ‘avcp’
Container:	Sample Description Box (‘stsd’)
Mandatory:	Yes
Quantity:	One or more sample entries may be present
An AVC parameter stream sample entry shall contain an AVC Parameter Stream Configuration Box, as defined below.
Syntax
class AVCParameterSampleEntry() extends VisualSampleEntry (‘avcp’){
	AVCConfigurationBox	config;
}
Semantics
Compressorname in the base class VisualSampleEntry indicates the name of the compressor used with the value "\016AVC Parameters" being recommended (\016 is 14, the length of the string as a byte).
config is defined in 5.3.3. numOfSequenceParameterSets and numOfPictureParameterSets must both be zero.
Sample format
Definition
This subclause defines the sample format for AVC Parameter set streams. An AVC parameter set sample contains only one or more sequence, picture parameter set, or sequence parameter set extension NAL units.
Syntax
aligned(8) class AVCParameterSample
{
	unsigned int PictureLength = sample_size;
				//Size of AVCParameterSample from SampleSizeBox
	for (i=0; i<PictureLength;)		// to end of the picture
	{
		unsigned int((AVCDecoderConfigurationRecord.LengthSizeMinusOne+1)*8)
			NALUnitLength;
		bit(NALUnitLength * 8) NALUnit;
		i += (AVCDecoderConfigurationRecord.LengthSizeMinusOne+1) + NALUnitLength;
	}
}
Semantics
NALUnitLength indicates the size of a NAL unit measured in bytes. The length field includes the size of both the one byte NAL header and the EBSP payload but does not include the length field itself.
NALUnit contains a single NAL unit. The syntax of a NAL unit is defined in ISO/IEC 14496-10 and includes both the one byte NAL header and the variable length encapsulated byte stream payload.
Track reference
[bookmark: _Toc47938830][bookmark: _Toc49271122][bookmark: _Toc117242290]A track reference of type ‘avcp’ in the video elementary stream track reference table, referencing the parameter set stream, is used to connect from the video elementary stream to the parameter set elementary stream.
[bookmark: _Toc49271124][bookmark: _Toc117242292]Parameter sets
This subclause applies when a separate parameter set stream is not used.
Each AVC sample entry, which contains the AVC video stream decoder specific information, includes a group of SPSs and PPSs. This group of parameter sets functions much like a codebook. Each parameter set has an identifier, and each slice references the parameter set it was coded against using the parameter set's identifier.
When the sample entry name is 'avc1' or 'avc2', the following applies:
· In the file format each configuration of parameter sets is represented separately. A parameter set cannot be updated without causing a different sample entry to be used. For example, suppose that samples 1 to 4 use PPSs identified as 1, 2, 3 and a single SPS identified as 1. At sample 5 a new value of PPS 2 is required but PPSs 1 and 3 remain unaltered and are used until sample 10. In this case, the sample entry for samples 1 through 4 is the same and contains the initial values of PPSs 1, 2, 3 and SPS 1. At sample 5 the sample entry must change to a second sample entry, which contains the updated value for PPS 2 as well as the original values of PPSs 1 and 3 and SPS 1. This second sample entry is used for samples 5 through 10.
· Systems wishing to send SPS or PPS updates will need to compare the two configurations to find the differences in order to send the appropriate parameter set updates.
NOTE 1	It is recommended that when several parameter sets are used and parameter set updating is desired, a separate parameter set elementary stream be used.
NOTE 2	Decoders conforming to this specification are required to support both parameter sets stored in separate elementary streams as well as parameter sets stored in the AVC sample entries, unless restricted by another specification using this one.
When the sample entry name is 'avc3' or 'avc4', parameter sets may be present in both sample entry and as part of samples, and an update of a parameter set by a parameter set of the same type that is stored as part of a sample is possible.
[bookmark: _Hlt47928521][bookmark: _Toc15466323][bookmark: _Ref15963370][bookmark: _Ref15963384][bookmark: _Ref17682188][bookmark: _Ref29615055][bookmark: _Toc49271128][bookmark: _Ref117241462][bookmark: _Toc117242296][bookmark: _Ref117243768][bookmark: _Ref117243949][bookmark: _Ref252432282][bookmark: _Toc15466307]Layering and sub-sequences
Introduction
Streams may be constructed so that the referential dependencies between samples allow only subsets of the samples to be sent to the decoder. This mechanism is called thinning a stream. Thinning discards entire sets of samples using knowledge of what other sets of pictures this set of pictures depends on and what picture sets in turn depend on it.
The referential dependencies between samples in a stream are structured into layers and sub-sequences. Samples in higher layers can only depend on samples in lower layers. Layers are numbered, and the samples are organized such that a sample in layer N has no dependencies on samples in layers greater than N.
Sub-sequences are as defined in the Annex D of ISO/IEC 14496-10. Dependency relations between sub-sequences represent the dependency structure of a stream. Each sub-sequence belongs to one and only one layer. A sample shall reside in one layer and in one sub-sequence only.
[bookmark: _Ref3082983]Layering and sub-sequence information is represented in the file format to allow systems reading the files to understand the ways in which stream thinning may be achieved without having to examine the dependency structure of every sample.
Layer and sub-sequences are represented in the AVC file format as Sample Group. An AVC file shall contain zero or one instance of a SampleToGroupBox (per track) with a grouping_type equal to 'avll'. This SampleToGroupBox instance represents the assignment of samples in a track to layers. An accompanying instance of the SampleGroupDescriptionBox with the same grouping type shall, if it exists, contain AVCLayerEntry sample group entries describing the layers. Similarly, an AVC file shall contain zero or one instance of a SampleToGroupBox (per track) with a grouping_type equal to ‘avss’. This SampleToGroupBox instance represents the assignment of samples in a track to sub-sequences. An accompanying instance of the SampleGroupDescriptionBox with the same grouping type shall, if it exists, contain AVCSubSequenceEntry sample group entries describing the sub-sequences.
[bookmark: _Toc8032787][bookmark: _Toc14578472]Sub-sequence description entry
Definition
Group Types:	‘avss'
Container:	Sample Group Description Box ('sgpd')
Mandatory:	No
Quantity:	Zero or more.
A sub-sequence description entry is a sample group entry that describes a sub-sequence. A sub-sequence is a set of samples in a track belonging to the same layer. A sub-sequence depends on another sub-sequence if and only if there exists a sample in the sub-sequence that is directly referentially dependent on some sample in the other sub-sequence. All samples in a sub-sequence shall directly depend only on (i.e., refer to) other samples within the same sub-sequence or samples in the sub-sequences on which is it dependent. A sub-sequence can depend on zero or more sub-sequences in the lower layers. A sub-sequence shall not depend on any other sub-sequence in the same or higher layer.
At most one partition of an AVC stream into layers shall exist in the AVC file format; that is, there is either zero or one instances of the sample group boxes (SampleToGroupBox, SampleGroupDescriptionBox) per track concerning the grouping of samples into layers and sub-sequences.
Syntax
aligned(8) class DependencyInfo
{
		unsigned int(8) subSeqDirectionFlag;
		unsigned int(8) layerNumber;
		unsigned int(16) subSequenceIdentifier;
}
class AVCSubSequenceEntry () extends VisualSampleGroupEntry ('avss')
{
		unsigned int(16) subSequenceIdentifer;
		unsigned int(8) layerNumber;
		unsigned int(1) durationFlag;
		unsigned int(1) avgRateFlag;
		unsigned int(6) reserved = 0;
		if (durationFlag)
			unsigned int(32) duration;
		if (avgRateFlag)
		{
			unsigned int(8) accurateStatisticsFlag;
			unsigned int(16) avgBitRate;
			unsigned int(16) avgFrameRate;
		}
		unsigned int(8) numReferences;
		DependencyInfo dependency[numReferences];
	}
}
Semantics
subSeqDirectionFlag, layerNumber and subSequenceIdentifier within the DependencyInfo class identify a sub-sequence that is used as a reference for this sub-sequence. Only direct, not indirect, referential dependencies shall be identified. The identified sub-sequence has sub-sequence identifier equal to subSequenceIdentifier and resides in the layer having the layer number equal to layerNumber. If subSeqDirectionFlag is 0, the sub-sequence used as a reference for this sub-sequence is the closest sub-sequence among all the candidate sub-sequences whose first picture precedes the first picture of this sub-sequence in decoding order and which resides in the indicated layer and has the indicated sub-sequence identifier; ‘closest’ means that among all the candidate sub-sequences the first picture of the referenced sub-sequence is the closest to the first picture of this sub-sequence in decoding order. If subSeqDirectionFlag is equal to 1, the sub-sequence used as a reference for this sub-sequence is the closest sub-sequence among all the candidate sub-sequences whose first picture succeeds the first picture of this sub-sequence in decoding order and which resides in the indicated layer and has the indicated sub-sequence identifier; ‘closest’ has the same meaning as above.
subSequenceIdentifier gives the identifier for the sub-sequence.
layerNumber gives the layer number to which the sub-sequence belongs.
durationFlag equal to 0 indicates that the duration of the target sub-sequence is not specified. Otherwise, a value of 1 indicates that the duration field indicates the duration of this sub-sequence.
avgRateFlag equal to 0 indicates that the average bit rate and the average frame rate of the target sub-sequence are unspecified. Otherwise, a value of 1 indicates that the average rate characteristics are described by the accurateStatisticsFlag, avgBitRate, and avgFrameRate fields.
duration indicates the duration of the target sub-sequence in clock ticks of a 90-kHz clock.
accurateStatisticsFlag indicates how reliable the values of avgBitRate and avgFrameRate are. accurateStatisticsFlag equal to 1 indicates that avgBitRate and avgFrameRate are rounded from statistically correct values. accurateStatisticsFlag equal to 0 indicates that avgBitRate and avgFrameRate are estimates and may deviate somewhat from the correct values.
avgBitRate gives the average bit rate in (1000 bits)/second of this sub-sequence. All NAL units of this sub-sequence are taken into account in the calculation. In the following, B is the number of bits in all NAL units in the sub-sequence. t1 is the decoding timestamp of the first picture of the sub-sequence (in decoding order), and t2 is the decoding timestamp of the last picture of the sub-sequence (in decoding order). Then, the avgBitRate is calculated as follows provided that t1 t2: avgBitRate = round(B ((t2 - t1) * 1000)). If t1 = t2, avgBitRate shall be 0.
avgFrameRate gives the average frame rate in units of frames/(256 seconds) of this sub-sequence. All NAL units of this sub-sequence are taken into account in the calculation. The average frame rate is calculated according to the presentation timestamp of the frame. In the following, C is the number of frames in the sub-sequence. t1 is the presentation timestamp of the first picture of the sub-sequence (in decoding order), and t2 is the presentation timestamp (in seconds) of the last picture of the sub-sequence (in decoding order). Then, the avgFrameRate is calculated as follows provided that t1 t2: avgFrameRate = round(C * 256 (t2 – t1)). If t1 = t2, avgFrameRate shall be 0. Value zero indicates an unspecified frame rate.
numReferences gives the number of sub-sequences directly referenced in this sub-sequence. dependency is an array of DependencyInfo structures giving the identifying referenced sub-sequences.
[bookmark: _Toc8032788][bookmark: _Toc14578473]Layer description entry
Definition
Group Types:	‘avll’
Container:	Sample Group Description Box (‘sgpd’)
Mandatory:	No
Quantity:	Zero or more.
A layer sample group entry defines the layer information for all samples in a layer. Layers are numbered with non-negative integers. Layers are ordered hierarchically based on their dependency on each other: A layer having a larger layer number is a higher layer than a layer having a smaller layer number. The layers are ordered hierarchically based on their dependency on each other so that a layer does not depend on any higher layer and may depend on lower layers. The lowest layer is numbered as zero and other layers are given consecutive numbers. In other words, layer 0 is independently decodable, pictures in layer 1 may be predicted from layer 0, pictures in layer 2 may be predicted from layers 0 and 1, etc.
Syntax
class AVCLayerEntry() extends VisualSampleGroupEntry ('avll')
{
	unsigned int(8) layerNumber;
 	unsigned int(8) accurateStatisticsFlag;
	unsigned int(16) avgBitRate;
	unsigned int(16) avgFrameRate;
}
Semantics
layerNumber gives the number of this layer with the base layer being numbered as zero and all enhancement layers being numbered as one or higher with consecutive numbers.
accurateStatisticsFlag indicates how reliable the values of avgBitRate and avgFrameRate are. accurateStatisticsFlag equal to 1 indicates that avgBitRate and avgFrameRate are rounded from statistically correct values. accurateStatisticsFlag equal to 0 indicates that avgBitRate and avgFrameRate are estimates and may deviate somewhat from the correct values.
avgBitRate gives the average bit rate in units of 1000 bits per second. All NAL units in this and lower sub-sequence layers are taken into account in the calculation. The average bit rate is calculated according to the decoding timestamp. In the following, B is the number of bits in all NAL units in this and lower sub-sequence layers. t1 is the decoding timestamp of the first picture in this and lower sub-sequence layers in the presentation order, and t2 is the decoding timestamp of the latest picture in this and lower sub-sequence layers in the presentation order. Then, avgBitRate is calculated as follows provided that t1 t2: avgBitRate = round(B ((t2 – t1) * 1000))). If t1 = t2, avgBitRate shall be 0. Value zero indicates an unspecified bit rate.
avgFrameRate gives the average frame rate in units of frames/(256 seconds). All NAL units in this and lower sub-sequence layers are taken into account in the calculation. In the following, C is the number of frames in this and lower sub-sequence layers. t1 is the presentation timestamp of the first picture in this and lower sub-sequence layers in presentation order, and t2 is the presentation timestamp of the latest picture in this and lower sub-sequence layers in the presentation order. Then, the avgFrameRate is calculated as follows provided that t1 t2: avgFrameRate = round(C * 256 (t2 – t1)). If t1 = t2, avgFrameRate shall be 0. Value zero indicates an unspecified frame rate.
[bookmark: _Hlt47928259][bookmark: _Hlt47928534][bookmark: _Ref15235705][bookmark: _Toc15466324][bookmark: _Toc49271129][bookmark: _Toc117242297]Alternate streams and switching pictures
Switching Pictures
In typical streaming scenarios, one of the key requirements is to scale the bit rate of the compressed data in response to changing network conditions. The simplest way to achieve this is to encode multiple streams with different bandwidths and quality settings for representative network conditions. The server can then switch amongst these pre-coded streams in response to network conditions. In earlier standards, switching between streams is only possible at I-pictures, because the pictures can only be switched when there are no dependencies on prior pictures for reconstruction.
AVC includes supports for SP-pictures and SI-pictures ("switching pictures") that allow switching from one stream to another while still supporting inter coding of switching pictures. The following figure shows how SP pictures are used to switch between two different bit streams.
[image:]
[bookmark: _Ref201136272][bookmark: _Ref358373798]Figure 3 — Stream switching
In the file format, switching pictures are stored in switching picture tracks, which are tracks separate from the track that is being switched from and the track being switched to. Switching picture tracks can be identified by the existence of a specific required track reference in that track. A switching picture is an alternative to the sample in the destination track that has exactly the same decoding time. If all switching pictures are SI pictures, then no further information is needed.
If any of the pictures in the switching track are SP pictures, then two extra pieces of information may be needed. First, the source track that is being switched from must be identified by using a track reference (the source track may be the same track as the destination track). Second, the dependency of the switching picture on the samples in the source track may be needed, so that a switching picture is only used when the pictures on which it depends have been supplied to the decoder.
This dependency is represented by means of an optional extra sample table. There is one entry per sample in the switching track. Each entry records the relative sample numbers in the source track on which the switching picture depends. If this array is empty for a given sample, then that switching sample contains an SI picture. If the dependency box is not present, then only SI-frames shall be present in the track.
A switching sample may have multiple coded representations with different dependencies. For AVC video, the multiple representations of a switching sample are stored in different switching tracks (i.e. access unit). For example, one switch track might contain a SP-picture representation dependent on some earlier samples, used for stream switching, while another switch track may contain another representation as an SI-picture, used for random access.
[bookmark: _Toc15466325]Alternate group
The ISO Base Media File Format (but not the version one specification of the MPEG-4 file format, which is branded as 'mp41') supports the use of what is called alternate tracks. Each track can optionally specify an alternate group (in the track header box) that groups together alternate encodings of the same content. Thus, each alternate bit-stream can be stored as a separate track and related together as alternate tracks. All the tracks which form a group which may be switched between, but not the tracks containing the switching pictures, must be a member of an alternate_group with a non-zero group identifier.
An alternate group is not needed if there is only one primary track, with a switching track. This switching track may contain SI pictures, or SP pictures for trick modes or error resilience, which predict both from and to the same track.
[bookmark: _Toc15466326]Track references
The switching track must be linked to the track into which it switches (the destination track) by a track reference of type ‘swto’ in the switching picture track.
If the switching track contains SP pictures, the switching track must be linked to the track from which it switches (the source track) by a track reference of type ‘swfr’ in the switching picture track.
[bookmark: _Toc15466327]Sample dependency
[bookmark: _Toc406229359]Definition
Box Type:	‘sdep’
Container:	Sample Table ‘stbl’
Mandatory:	No
Quantity:	Zero or exactly one.
This subclause defines the dependencies of each switching sample on sample(s) in the source track. This table is only needed in a switching track that has a source (‘swfr’) track dependency.
This box contains the sample dependencies for each switching sample. The dependencies are stored in the table, one record for each sample. The size of the table, sample_count is taken from the sample_count in the Sample Size Box ('stsz') or Compact Sample Size Box (‘stz2’).
Syntax
aligned(8) class SampleDependencyBox
	extends FullBox(‘sdep’, version = 0, 0) {
	for (i=0; i < sample_count; i++){
		unsigned int(16) dependency_count;
		for (k=0; k < dependency_count; k++) {
			signed int(16) relative_sample_number;
		}
	}
}
Semantics
dependency_count is an integer that counts the number of samples in the source track on which this switching sample directly depends.
relative_sample_number is an integer that identifies a sample in the source track. The relative sample numbers are encoded as follows. If there is a sample in the source track with the same decoding time, it has a relative sample number of 0. Whether or not this sample exists, the sample in the source track which immediately precedes the decoding time of the switching sample has relative sample number –1, the sample before that –2, and so on. Similarly, the sample in the source track which immediately follows the decoding time of the switching sample has relative sample number +1, the sample after that +2, and so on.
[bookmark: _Toc117242300][bookmark: _Ref117244000]Definition of a sub-sample for AVC
For the use of the sub-sample information box (8.7.7 of ISO/IEC 14496-12) in an AVC stream, a sub-sample is defined as one or more contiguous NAL units within a sample and having the same value of the following fields; RefPicFlag, RedPicFlag and VclNalUnitFlag. Each sub-sample includes both NAL unit(s) and their preceding NAL unit length field(s). The presence of this box is optional; however, if present in a track containing AVC data, it shall have the semantics defined here.
The subsample_priority field shall be set to a value in accordance with the specification of this field in ISO/IEC 14496-12.
The discardable field shall be set to 1 only if this sample can still be decoded if this sub-sample is discarded (e.g. the sub-sample consists of an SEI NAL unit, or a redundant coded picture).
The reserved field is defined for AVC as follows:
		unsigned int(1) RefPicFlag;
		unsigned int(1) RedPicFlag;
		unsigned int(1) VclNalUnitFlag;
		unsigned int(29) reserved = 0;
RefPicFlag equal to 0 indicates that all the NAL units in the sub-sample have nal_ref_idc equal to 0. RefPicFlag equal to 1 indicates that all the NAL units in the sub-sample have nal_ref_idc greater than 0.
[bookmark: _Toc118693426]RedPicFlag equal to 0 indicates that all the NAL units in the sub-sample have redundant_pic_cnt equal to 0. RedPicFlag equal to 1 indicates that all the NAL units in the sub-sample have redundant_pic_cnt greater than 0.
VclNalUnitFlag equal to 0 indicates that all NAL units in the sub-sample are non-VCL NAL units. Value 1 indicates that all NAL units in the sub-sample are VCL NAL units.
Post-decoder requirements scheme for signalling of SEI for AVC
General
In order to handle situations where the file author requires certain actions on the player or renderer, the ISO base media file format specifies the restricted-video mechanism where sample entries are hidden behind the generic sample entry ‘resv’. The mechanism applies to AVC and for this case a file author can list occurring SEI message IDs [ISO/IEC 14496-10] and classify them into two categories: those that are deemed required by the file author for correct playback, and others. The occurrence of either type of SEI messages can be signalled in the SEI Information box.
The scheme for signalling of SEI for AVC is defined here.
The SchemeType ‘aSEI’ (AVC SEI) is used.
SEI Information box
Definition
Box Type:	‘seii’
Container:	Scheme Information box (‘schi’)
Mandatory:	Yes (when the SchemeType is ‘aSEI’)
Quantity:	One
The SEI Information box is contained in the Scheme Information box when the SchemeType is ‘aSEI’, and contains information about the SEI messages present in the AVC stream. Although the SEI messages are not required for decoding, the file author may require certain actions for rendering or other purposes. The box distinguishes between SEI which is required to be understood for correct playback and SEI which is not required for correct playback (but may enhance playback).
By inspecting the SEI Information box a player will know which SEI messages that occur in the bitstream and whether they are required for rendering.
When the coding system is AVC and the restriction is signaled with SEI messages, then the SEI messages listed here should be stored either in the bitstream or in the AVC Configuration Record. The SEI Information box does not contain the actual SEI messages, it only lists those that occur in the bitstream.
Syntax
aligned(8) class SeiInformationBox extends Box(‘seii’) {
	unsigned int(16) numRequiredSEIs;
	for (i=0; i<numRequiredSEIs; i++) {
		unsigned int(16) requiredSEI_ID;
	}
	unsigned int(16) numNotRequiredSEIs;
	for (i=0; i<numNotRequiredSEIs; i++) {
		unsigned int(16) notrequiredSEI_ID;
	}
}
Semantics
requiredSEI_ID takes on the value “payloadType” of an SEI message present in the AVC stream that is deemed necessary by the file author for correct playback.
notrequiredSEI_ID takes on the value “payloadType” of an SEI message present in the AVC stream that is not deemed necessary by the file author for correct playback.
[bookmark: _Ref117241086][bookmark: _Toc117242301][bookmark: _Toc374356418][bookmark: _Toc232234492][bookmark: _Toc370302966][bookmark: _Toc370303282]SVC elementary stream and sample definitions
[bookmark: _Toc117242302][bookmark: _Toc374356419][bookmark: _Toc232234493][bookmark: _Toc370302967][bookmark: _Toc370303283][bookmark: _Toc109627212][bookmark: _Toc118693401]Introduction
This clause specifies the storage format of SVC data. It extends the definitions of the storage format of AVC in clause 5.
The file format for storage of SVC content, as defined in this clause and Annexes Annex A to Annex D, uses the existing capabilities of the ISO base media file format and the plain AVC file format (i.e. the file format specified in clause 5). In addition, the following new extensions, among others, to support SVC-specific features are specified.
Scalable or multiview grouping:
a structuring and grouping mechanism to indicate the association of NAL units with different types and hierarchy levels of scalability.
Aggregator:
a structure to enable efficient scalable grouping of NAL units by changing irregular patterns of NAL units into regular patterns of aggregated data units.
Extractor:
a structure to enable efficient extraction of NAL units from other tracks than the one containing the media data.
Temporal metadata statements:
structures for storing time-aligned information of media samples.
AVC compatibility:
a provision for storing an SVC bitstream in an AVC compatible manner, such that the AVC compatible base layer can be used by any plain AVC file format compliant reader.
[bookmark: _Toc117242304][bookmark: _Toc374356420][bookmark: _Toc232234494][bookmark: _Toc370302968][bookmark: _Toc370303284]Elementary stream structure
[bookmark: _Toc118693402][bookmark: _Toc109627213]SVC streams are stored in accordance with 5.2, with the following definition of an SVC video elementary stream:
· SVC Video Elementary Streams shall contain all video coding related NAL units (i.e. those NAL units containing video data or signalling video structure) and may contain non-video coding related NAL units such as SEI messages and access unit delimiter NAL units. Also Aggregators (see A.2) or Extractors (see A.3) may be present. Aggregators and Extractors shall be processed as defined in this International Standard (e.g. shall not directly be placed in the output buffer while accessing the file). Other NAL units that are not expressly prohibited may be present, and if they are unrecognized they should be ignored (e.g. not placed in the output buffer while accessing the file).
SVC streams may also be stored using associated parameter set streams, if needed.
For SVC streams, Table 2 is updated as follows; only entries where the definition for SVC differs from AVC, are shown. [Ed. (YK): The following table is incomplete, e.g. the situations for PPS, SPS, and SPS extension NAL units as well as other types of NAL units in SVC video streams are not specified. On the other hand, this table is only informative as the normative aspects are all specified elsewhere. Therefore, it would be less confusing to just remove the table.]
Table 3 – NAL Unit types in SVC and AVC Streams
	Value of nal_unit_type
	Description
	AVC video elementary stream
	SVC video elementary stream (sample entry 'avc1', 'avc2', or 'svc1')
	SVC video elementary stream (sample entry 'avc3', 'avc4', or 'svc2')
	Parameter set elementary stream

	14
	Prefix NAL unit in scalable extension
prefix_nal_unit_rbsp()
	Not specified
	Yes
	Yes
	No

	15
	Subset sequence parameter set
subset_seq_parameter_set_rbsp()
	Not specified
	No.
If parameter set elementary stream is not used, Subset SPS shall be stored in the Decoder Specific Information.
	Yes.
Parameter set elementary stream shall not be used.
	Yes

	20
	Coded slice in scalable extension
slice_layer_ extension_rbsp()
	Not specified
	Yes
	Yes
	No

	24 – 29
	Not specified
	Not specified
	Not specified
	Not specified
	Not specified

	30
	Aggregator
	Not specified
	Yes
	Yes
	No

	31
	Extractor
	Not specified
	Yes
	Yes
	No

NOTE	slice_layer_extension_rbsp was previously called slice_layer_in_scalable_extension_rbsp.
There may be AVC VCL NAL units, SVC VCL NAL units and other NAL units, i.e. non-VCL NAL units, present in an SVC video elementary stream. Additionally, there may be Aggregator NAL units and Extractor NAL units present in an SVC video elementary stream.
[bookmark: _Toc117242305]An AVC VCL NAL unit in an SVC video elementary stream conforming to one or more profiles specified in Annex G of ISO/IEC 14496-10 shall be immediately preceded by a prefix NAL unit containing the scalability information for the AVC VCL NAL unit. In this file format an AVC VCL NAL unit and the immediately preceding prefix NAL unit are logically seen as one NAL unit: the prefix NAL unit provides the scalability information and the AVC VCL NAL unit provides the NAL unit type and payload.
[bookmark: _Toc374356421][bookmark: _Toc232234495][bookmark: _Toc370302969][bookmark: _Toc370303285]Use of the plain AVC file format
The SVC file format is an extension of the plain AVC file format defined in clause 5 of this part of this International Standard.
Subclause 5.4.5 is defined for use with plain AVC streams. Its use with SVC streams is deprecated.
[bookmark: _Toc117242306][bookmark: _Toc374356422][bookmark: _Toc232234496][bookmark: _Toc370302970][bookmark: _Toc370303286]Sample and configuration definition
[bookmark: _Toc117242307]Introduction
[bookmark: _Toc117242308]SVC Sample: An SVC sample is also an access unit as defined in 7.4.1.2 of ISO/IEC 14496-10.
Canonical order and restrictions
Restrictions
[bookmark: _Hlt120700333]The following restrictions apply to SVC data in addition to the requirements in 5.3.2.
· SVC coded slice NAL units (Coded slices in scalable extension): All SVC coded slice NAL units for a single instant in time shall be contained in the sample whose composition time is that of the picture represented by the access unit. An SVC sample shall contain at least one AVC or SVC VCL NAL unit.
· Prefix NAL units (Prefix NAL unit in scalable extension): Each prefix NAL unit is placed immediately before the corresponding AVC VCL NAL unit, providing scalability information about the AVC VCL NAL unit.
· NOTE	Prefix NAL units may also be associated with filler data NAL units.
· Aggregators/Extractors: The order of all NAL units included in an Aggregator or referenced by an Extractor is exactly the decoding order as if these NAL units were present in a sample not containing aggregators or extractors. After processing the Aggregator or the Extractor, all NAL units must be in valid decoding order as specified in ISO/IEC 14496-10.
Decoder configuration record
When the decoder configuration record defined in 5.3.3.1 is used for a stream which can be interpreted as either an SVC or AVC stream, the AVC decoder configuration record shall reflect the properties of the AVC compatible base layer, e.g. it shall contain only parameter sets needed for decoding the AVC base layer.
If the sample entry name is 'svc1', a parameter set stream may be used with SVC streams, as with AVC streams, in which case, parameter sets shall not be included in the decoder configuration record. Otherwise (the sample entry name is 'svc2'), parameter sets may be stored in both the decoder configuration record or as part of samples while a parameter set elementary stream shall not be used.
Sequence or picture parameter sets are numbered in order of storage from 1 to numOfSequenceParameterSets or numOfPictureParameterSets respectively. Sequence and Picture parameter sets stored in this record in a file may be referenced using this 1-based index by the InitialParameterSetBox.
[bookmark: _Toc118693405]The SVCDecoderConfigurationRecord is structurally identical to an AVCDecoderConfigurationRecord. However, the reserved bits preceding and succeeding the lengthSizeMinusOne field are re-defined. The syntax is as follows:
aligned(8) class SVCDecoderConfigurationRecord {
	unsigned int(8) configurationVersion = 1;
	unsigned int(8) AVCProfileIndication;
	unsigned int(8) profile_compatibility;
	unsigned int(8) AVCLevelIndication;
	bit(1) complete_represenation;
	bit(5) reserved = ‘11111’b;
	unsigned int(2) lengthSizeMinusOne;
	bit(1) reserved = ‘0’b;
	unsigned int(7) numOfSequenceParameterSets;
	for (i=0; i< numOfSequenceParameterSets; i++) {
		unsigned int(16) sequenceParameterSetLength ;
		bit(8*sequenceParameterSetLength) sequenceParameterSetNALUnit;
	}
	unsigned int(8) numOfPictureParameterSets;
	for (i=0; i< numOfPictureParameterSets; i++) {
		unsigned int(16) pictureParameterSetLength;
		bit(8*pictureParameterSetLength) pictureParameterSetNALUnit;
	}
}
The semantics of the fields AVCProfileIndication, profile_compatibility, and AVCLevelIndication differ from the AVCDecoderConfigurationRecord as follows:
The fields AVCProfileIndication, AVCLevelIndication carry the profile and level indications, respectively, indicating the profile and level of the entire scalable stream in this track. They, and the profile_compatibility field, must have values such that a conforming SVC decoder is able to decode bitstreams conforming to the profile, level and profile compatibility flags indicated in any of the sequence parameter sets or subset sequence parameter sets contained in this record.
The semantics of other fields are as follows, or are as defined for an AVCDecoderConfigurationRecord:
complete_representation is set on a minimal set of tracks that contain a portion of the original encoded scalable stream, as defined in 6.5.1. Other tracks may be removed from the file without loss of any portion of the original encoded bitstream, and, once the set of tracks has been reduced to only those in the complete subset, any further removal of a track removes a portion of the encoded information.
numOfSequenceParameterSets indicates the number of SPSs and subset SPSs that are used for decoding the SVC elementary stream. The value of numOfSequenceParameterSets shall be in the range of 0 to 64, inclusive.
SequenceParameterSetLength indicates the length in bytes of the SPS or subset SPS NAL unit.
SequenceParameterSetNALUnit contains a SPS or subset SPS NAL unit. SPSs shall occur in order of ascending parameter set identifier with gaps being allowed. Subset SPSs shall occur in order of ascending parameter set identifier with gaps being allowed. Any SPS shall occur before all the subset SPSs, if any.
[bookmark: _Toc117242309][bookmark: _Toc374356423][bookmark: _Toc232234497][bookmark: _Toc370302971][bookmark: _Toc370303287]Derivation from the ISO base media file format
[bookmark: _Ref29531904][bookmark: _Toc117242310][bookmark: _Toc118693409]SVC track structure
A scalable video stream is represented by one or more video tracks in a file. Each track represents one or more operating points of the scalable stream. A scalable stream may, of course, be further thinned, if desired.
There is a minimal set of one or more tracks that, when taken together, contain the complete set of encoded information. All these tracks shall have the flag “complete_representation” set in all their sample entries. This group of tracks that form the complete encoded information are called the “complete subset”.
Let the lowest operating point be the one of all the operating points represented by DTQ (dependency_id, temporal_id and quality_id) combinations that has the least values of dependency_id, temporal_id and quality_id, respectively. The track that has the flag “complete_representation” set and contains the lowest operating point shall be nominated as the ‘scalable base track’. All the other tracks that are part of the same scalable encoded information shall be linked to this base track by means of a track reference of type ‘sbas’ (scalable base). The complete encoded information can be retained when the tracks included in the “complete subset” are retained; all other tracks shall be extractions, subsets, copies or re-orderings of the complete subset.
NOTE 1	An alternate group may also include completely independent bitstreams, as well as alternative operating points of the same bitstream. The SVC tracks in the alternate group must be examined to see how many scalable base tracks are identified.
NOTE 2	“A scalable bitstream” may require more than one track to represent it (consider a stream with a low-resolution, low-frame-rate base layer, and a high resolution enhancement layer, and a high frame-rate enhancement layer, but missing the data for high resolution high frame-rate). However, such a scalable bitstream is typically a non-conforming bitstream.
All the tracks sharing the same scalable base track must share the same timescale as the scalable base track.
[bookmark: _Toc117242311]Data sharing and extraction
Different tracks may logically share data. This sharing can take one of the following two forms:
a) The sample data is copied from one track into another track (and possibly compacted or re-interleaved with other data, such as audio). This creates larger overall files, but the low bit rate data may be compacted and/or interleaved with other material, for ease of extraction.
b) There may be instructions on how to perform this copy at the time that the file is read.
[bookmark: _Toc117242312]For the second case, Extractors (defined in A.3) are used.
SVC video stream definition
Sample entry name and format
[bookmark: _Ref117244090]Definition
Sample Entry and Box Types:	‘avc1’, ‘avc2’, ‘avc3’, ‘avc4’, ‘svc1’, 'svc2', ’svcC’,’seib’
Container:	Sample Description Box (‘stsd’)
Mandatory:	One of the 'avc1', 'avc2', 'avc3', 'avc4', 'svc1', and 'svc2' sample entries is mandatory.
Quantity:	One or more sample entries may be present
If an SVC elementary stream contains a usable AVC compatible base layer, then an AVC visual sample entry (‘avc1’, ‘avc2’, 'avc3', or 'avc4') shall be used. Here, the entry shall contain initially an AVC Configuration Box, possibly followed by an SVC Configuration Box as defined below. The AVC Configuration Box documents the Profile, Level, and possibly also parameter sets pertaining to the AVC compatible base layer as defined by the AVCDecoderConfigurationRecord. The SVC Configuration Box documents the Profile, Level and Parameter Set information pertaining to the entire stream containing the SVC compatible enhancement layers as defined by the SVCDecoderConfigurationRecord, stored in the SVCConfigurationBox.
If the SVC elementary stream does not contain a usable AVC base layer, then an SVC visual sample entry (‘svc1’ or 'svc2') shall be used. The SVC visual sample entry shall contain an SVC Configuration Box, as defined below. This includes an SVCDecoderConfigurationRecord, as defined in this International Standard.
The lengthSizeMinusOne field in the SVC and AVC configurations in any given sample entry shall have the same value.
A priority assignment URI provides the name (in the URI space) of a method used to assign priority_id values. When it occurs in an AVC or SVC sample entry, exactly one URI shall be present, that documents the priority_id assignments in the stream. The URI is treated here as a name only; it should be de-referenceable, though this is not required. File readers may be able to recognize some methods and thereby know what stream extraction operations based on priority_id would do.
Extractors or aggregators may be used for SVC VCL NAL units in ‘avc1’, ‘avc2’, 'avc3', 'avc4', ‘svc1’ or 'svc2' tracks. The ‘extra_boxes’ in an ‘avc2’ or 'avc4' sample entry may be an SVCConfigurationBox, ScalabilityInformationSEIBox, SVCPriorityAssignmentBox or other extension boxes.
NOTE	When AVC compatibility is indicated, it may be necessary to indicate an unrealistic level for the AVC base layer, to accommodate the bit rate of the entire stream, because all the NAL units are considered as included in the AVC base layer and hence may be fed to the decoder, which is expected to discard those NAL unit it does not recognize. This case happens when the ‘avc1’ or 'avc3' sample entry is used and both AVC and SVC configurations are present.
Either or both of a ScalabilityInformationSEIBox or SVCConfigurationBox may be present in an ‘avc1’ or 'avc3' sample entry. In this case the AVCSVCSampleEntry definition below applies.
The parameter sets required to decode a NAL unit that is present in the sample data of a video stream, either directly or by reference from an Extractor, shall be present in the decoder configuration of that video stream or in the associated parameter set stream (if used).
The following table shows for a video track all the possible uses of sample entries, configurations and the SVC tools (excluding timed metadata, which is always used in another track):
Table 4 – Use of sample entries for AVC and SVC tracks
	sample entry name
	with configuration records
	Meaning

	‘avc1’ or 'avc3'
	AVC Configuration Only
	A plain AVC track with AVC NAL units only; Extractors, aggregators, and tier grouping shall not be present.

	‘avc1’ or 'avc3'
	AVC and SVC Configurations
	An SVC track with both AVC and SVC NAL units; Extractors and aggregators may be present; Extractors shall not reference AVC NAL units; Aggregators shall not contain but may reference AVC NAL units; Tier grouping may be present.

	‘avc2’ or 'avc4'
	AVC Configuration Only
	A plain AVC track with AVC NAL units only; Extractors may be present and used to reference AVC NAL units; Aggregators may be present to contain and reference AVC NAL units; Tier grouping may be present.

	‘avc2’ or 'avc4'
	AVC and SVC Configurations
	An SVC track with both AVC and SVC NAL units; Extractors and aggregators may be present; Extractors may reference both AVC and SVC NAL units; Aggregators shall not contain but may reference AVC NAL units, and may both contain and reference SVC NAL units; Tier grouping may be present.

	‘svc1’ or 'svc2'
	SVC Configuration
	An SVC track without AVC NAL units; Extractors may be present and used to reference NAL units; Aggregators may be present to contain and reference NAL units; Tier grouping may be present.

[bookmark: _Ref117244105]Syntax
class SVCConfigurationBox extends Box(‘svcC’) {
	SVCDecoderConfigurationRecord() SVCConfig;
}
class ScalabilityInformationSEIBox extends Box(‘seib’, size)
{
	unsigned int(8*size-64)	scalinfosei;
}
class SVCPriorityAssignmentBox extends Box(‘svcP’)
{
	unsigned int(8)	method_count;
	string PriorityAssignmentURI[method_count];
}
class AVCSVCSampleEntry() extends AVCSampleEntry('avc1' or 'avc3') {
	SVCConfigurationBox	svcconfig;			// optional
	ScalabilityInformationSEIBox	scalability;	// optional
	SVCPriorityAssignmentBox	method;			// optional
}
class AVC2SVCSampleEntry() extends AVC2SampleEntry('avc2' or 'avc4') {
	SVCConfigurationBox	svcconfig;			// optional	ScalabilityInformationSEIBox	scalability;	// optional
	SVCPriorityAssignmentBox	method;			// optional
}
// Use this if the track is NOT AVC compatible
class SVCSampleEntry() extends VisualSampleEntry('svc1' or 'svc2') {	SVCConfigurationBox		svcconfig;
	MPEG4BitRateBox bitrate; 					// optional
	MPEG4ExtensionDescriptorsBox descr;	// optional
	ScalabilityInformationSEIBox	scalability;	// optional
	SVCPriorityAssignmentBox	method;			// optional
}
Semantics
When the sample entry is ‘svc1 or ‘svc2’, Compressorname in the base class VisualSampleEntry indicates the name of the compressor used, with the value “\012SVC Coding” being recommended (\012 is 10, the length of the string “SVC coding” in bytes).
scalinfosei contains an SEI NAL unit containing only a scalability information SEI message as specified in ISO/IEC 14496-10 Annex G. The ’size’ field of the container box ScalabilityInformationSEIBox shall not be equal to 0 or 1.
method_count provides a count of the number of following URIs. This field must take the value 1 in an ‘avc1’, ‘avc2’, 'avc3', 'avc4', ‘svc1’ or 'svc2' sample entry.
PriorityAssignmentURI provides a unique name of the method used to assign priority_id values. In the case of absence of this box, the priority assignment method is unknown.
[bookmark: _Toc117242313]SVC visual width and height
The visual width and height documented in a VisualSampleEntry of a stream containing SVC VCL NAL unit is the visual width and height of the AVC base layer, if the stream is described by a sample entry of type ‘avc1’, ‘avc2’, 'avc3' or 'avc4'; otherwise it is the visual width and height of decoded pictures by decoding the entire stream.
[bookmark: _Toc117242314]Sync sample (IDR)
For video data described by a sample entry of type ‘avc1’, ‘avc2’, 'avc3', or 'avc4', the sync sample table identifies IDR access units for both an AVC decoder, and an SVC decoder (if any) operating on the entire bitstream.
For video data described by a sample entry of type ‘svc1’, the sync sample table identifies IDR access units in the entire SVC bitstream.
For video data described by a sample entry of type ‘svc2’, the sync sample table identifies IDR access units in the entire SVC bitstream, and additionally the following applies:
1. If the sample is an IDR access unit, all parameter sets needed for decoding that sample shall be included either in the sample entry or in the sample itself.
2. Otherwise (the sample is not an IDR access unit), all parameter sets needed for decoding the sample shall be included either in the sample entry or in any of the samples since the previous random access point to the sample itself, inclusive.
NOTE	The sync sample table, if present, documents only access units that are IDR access units for both the AVC compatible base layer and the layer corresponding to decoding the entire bitstream contained in the track. In case documenting of layer-specific IDR access units is desired, the stream should be stored in separate tracks, e.g. two tracks, one containing the AVC base layer with a sample entry of type ‘avc1’ or 'avc3', and the other containing the SVC enhancement layers with a sample entry of type ‘svc1’ or 'svc2'. However, extractors must then be used for tracks that are not the scalable base track.
[bookmark: _Toc117242315]Shadow sync
A shadow sync box shall not be used for video data described by an ‘svc1’ or 'svc2' sample entry. Its use for SVC is deprecated.
[bookmark: _Toc117242316]Independent and disposable samples box
If it is used in a track which is both AVC and SVC compatible, then care should be taken that the statements are true no matter what valid subset of the SVC data (possibly only the AVC data) is used. The ‘unknown’ values (value 0 of the fields sample-depends-on, sample-is-depended-on, and sample-has-redundancy) may be needed if the information varies.
[bookmark: _Toc117242317]Sample groups on random access recovery points and random access points
For video data described by a sample entry of type ‘avc1’, ‘avc2’, 'avc3' or 'avc4', the random access recovery sample group and the random access point sample group identify random access recovery points and random access points, respectively, for both an AVC decoder, and an SVC decoder (if any) operating on the entire bitstream.
NOTE	If the random access recovery points or the random access points for the AVC decoder and the SVC decoder operating on the entire bitstream are not all aligned, the random access recovery points table or the random access point table, respectively, will not document all of them. In this case, the stream can be stored in multiple tracks, e.g. two tracks, one containing the AVC base layer with a sample entry of type ‘avc1’ or 'avc3', and the other containing the SVC enhancement layers with a sample entry of type ‘svc1’ or 'svc2'.
For video data described by a sample entry of type ‘svc1’ or 'svc2’, the random access recovery sample group identifies random access recovery in the entire SVC bitstream and the random access point sample group identifies random access points in the entire SVC bitstream.
[bookmark: _Ref151894428][bookmark: _Toc117242319]Definition of a sub-sample for SVC
This subclause extends the definition of a sub-sample for AVC in 5.4.7.
For the use of the sub-sample information box (8.7.7 of ISO/IEC 14496-12) in an SVC stream, a sub-sample is defined as one or more contiguous whole NAL units having the same values of the following fields: RefPicFlag, RedPicFlag, VclNalUnitFlag, IdrFlag, PriorityId, DependencyId, QualityId, TemporalId, UseRefBasePicFlag, DiscardableFlag and StoreBaseRepFlag, specified subsequently. Each sub-sample includes both NAL unit(s) and their preceding NAL unit length field(s). The presence of this box is optional; however, if present in a track containing SVC data, it shall have the semantics defined here.
As required in 5.4.7, the subsample_priority field shall be set to a value in accordance with the specification of this field in ISO/IEC 14496-12.
The reserved field is defined for SVC as follows:
		unsigned int(1) RefPicFlag;
		unsigned int(1) RedPicFlag;
		unsigned int(1) VclNalUnitFlag;
		unsigned int(5) reserved = 0;
		unsigned int(1) reserved = 0;
		unsigned int(1) IdrFlag;
		unsigned int(6) PriorityId;
		unsigned int(1) reserved = 0; // corresponding to no_inter_layer_pred_flag
		unsigned int(3) DependencyId;
		unsigned int(4) QualityId;
		unsigned int(3) TemporalId;
		unsigned int(1) UseRefBasePicFlag;
		unsigned int(1) DiscardableFlag;
		unsigned int(1) reserved = 0; // corresponding to output_flag
		unsigned int(1) StoreBaseRepFlag;
		unsigned int(1) reserved = 0;
For an AVC VCL NAL unit in an SVC context, the prefix NAL unit shall be grouped with the AVC VCL NAL unit in the same sub-sample, and its fields values apply to the AVC VCL NAL unit.
RefPicFlag equal to 0 indicates that all the NAL units in the sub-sample have nal_ref_idc equal to 0. RefPicFlag equal to 1 indicates that all the NAL units in the sub-sample have nal_ref_idc greater than 0.
RedPicFlag equal to 0 indicates that all the NAL units in the sub-sample have redundant_pic_cnt equal to 0. RedPicFlag equal to 1 indicates that all the NAL units in the sub-sample have redundant_pic_cnt greater than 0.
VclNalUnitFlag equal to 0 indicates that all NAL units in the sub-sample are non-VCL NAL units. Value 1 indicates that all NAL units in the sub-sample are VCL NAL units.
IdrFlag indicates the idr_flag value of the NAL units in the sub-sample. All the NAL units in the sub-sample shall have the same value of idr_flag.
PriorityId indicates the priority_id value of the NAL units in the sub-sample. All the NAL units in the sub-sample shall have the same value of priority_id.
NoInterLayerPredFlag indicates the no_inter_layer_pred_flag of the NAL units in the sub-sample. All the NAL units in the sub-sample shall have the same value of no_inter_layer_pred_flag.
DependencyId indicates the dependency_id value of the NAL units in the sub-sample. All the NAL units in the sub-sample shall have the same dependency_id value.
[bookmark: OLE_LINK10][bookmark: OLE_LINK11]QualityId indicates the quality_id value of the NAL units in the sub-sample. All the NAL units in the sub-sample shall have the same quality_id value.
TemporalId indicates the temporal_id value of the NAL units in the sub-sample. All the NAL units in the sub-sample shall have the same temporal_id value.
UseRefBasePicFlag indicates the use_ref_base_pic_flag value of the NAL units in the sub-sample. All the NAL units in the sub-sample shall have the same value of use_ref_base_pic_flag.
DiscardableFlag indicates the discardable_flag value of the NAL units in the sub-sample. All the NAL units in the sub-sample shall have the same discardable_flag value.
NOTE	 that this is not the same definition as the discardable field in the sub-sample information box.
StoreBaseRepFlag indicates the store_base_rep_flag value of the NAL units in the sub-sample. All the NAL units in the sub-sample shall have the same value of store_base_rep_flag.
[bookmark: _Ref201138272][bookmark: _Toc374356424][bookmark: _Toc232234498][bookmark: _Toc370302972][bookmark: _Toc370303288][bookmark: _Ref117240979][bookmark: _Toc117242320]MVC and MVD elementary stream and sample definitions
[bookmark: _Toc374356425][bookmark: _Toc232234499][bookmark: _Toc370302973][bookmark: _Toc370303289]Introduction
This clause specifies the storage format of MVC data. It extends the definitions of the storage format of AVC in clause 5.
[Ed. (YK): Currently unpaired output of video and depth is not supported.]
The file format for storage of MVC and MVD content, as defined in this clause and Annexes Annex A to Annex D uses the existing capabilities of the ISO base media file format and the plain AVC file format (i.e. the file format specified in clause 5). In addition, the following new extensions, among others, to support MVC- and MVD-specific features are specified.
Multiview grouping:
a structuring and grouping mechanism to indicate the association of NAL units with different types and hierarchy levels of scalability.
Aggregator:
a structure to enable efficient scalable grouping of NAL units by changing irregular patterns of NAL units into regular patterns of aggregated data units.
Extractor:
a structure to enable efficient extraction of NAL units from other tracks than the one containing the media data.
Temporal metadata statements:
structures for storing time-aligned information of media samples.
AVC compatibility:
a provision for storing an MVC or MVD bitstream in an AVC compatible manner, such that the AVC compatible base layer can be used by any plain AVC file format compliant reader.
The support for MVC or MVD includes a number of tools, and there are various ‘models’ of how they might be used. In particular, an MVC or MVD stream can be placed in tracks in a number of ways, among which are the following:
1. all the views in one track, labelled with sample groups;
2. each view, including both texture views and depth views when both are present, in its own track, labelled in the sample entries;
3. a hybrid, one track containing all views, and one or more single-view tracks each containing a view that can be independently coded;
4. the expected operating points each in a track (e.g. the AVC base, a stereo pair, a multiview scene, or an MVD scene).
5. (for MVD only) each texture or depth view in its own track, labelled in the sample entries.
[Ed. (DS): We should use ‘auxiliary video’ tracks for separate depth tracks; the track dependency is right (it says ‘depth’)].
The MVC and MVD file format allows storage of one or more views into a track, similarly to the support for SVC in clause 6. Storage of multiple views per track can be used, e.g., when a content provider wants to provide a multiview bitstream that is not intended for subsetting or when the bitstream has been created for a few pre-defined sets of output views (such as 1, 2, 5, or 9 views) where tracks can be created accordingly. If more than one view is stored in a track and there are several tracks (more than one) representing the MVC or MVD bitstream, the use of the sample grouping mechanism is recommended. The sample grouping mechanism is used to define tiers identifying the views present in the track and to extract required NAL units for certain operation points conveniently. The sample grouping mechanism is usually used with aggregator NAL units to form regular NAL unit patterns within samples. Thus, SVC-like sample grouping, aggregators, and view definitions for sample groups are specified for MVC and MVD.
The Multiview Information box ('mvci') is specified to indicate information that applies to more than one view, such as the target output views in one or more Multiview Group boxes. Characteristics (such as camera parameters) of the respective bitstream subset can also be indicated within the Multiview Group box using the Multiview Relation Attributes box ('mvra'), which is similar to the Track Selection box.
A player should have means to determine which views are preferred for displaying, and select one or more tracks that provide the data for the desired operating point, preferring a track that is specific to that operating point over tracks that also contain other data. The display characteristics of players may differ; for example, the number of simultaneously displayed views and the optimal angle between views can be different. In order to guide a player for selection of output views, alternative groups of output views and the common and differentiating characteristics between them can be indicated with the Multiview Group Relation box ('swtc'), which also includes the Multiview Relation Attributes box ('mvra').
When an MVC or MVD bitstream is represented by multiple tracks and a player uses an operating point that contains data in multiple tracks, the player must reconstruct MVC or MVD access units before passing them to the MVC or MVD decoder. An MVC or MVD operating point may be explicitly represented by a track, i.e., an access unit is reconstructed simply by resolving all extractor and aggregator NAL units of a sample. If the number of operating points is large, it may be space-consuming and impractical to create a track for each operating point. In such a case, MVC or MVD access units are reconstructed as specified in 7.6.2.The MVC or MVD Decoder Configuration record contains a field indicating whether the associated samples use explicit or implicit access unit reconstruction (see the explicit_au_track field).
[bookmark: _Toc374356426][bookmark: _Toc232234500][bookmark: _Toc370302974][bookmark: _Toc370303290]Overview of MVC and MVD Storage
The storage of MVC and MVD streams can be supported by a number of structures, including information in the sample entry, the media information box, and sample groups. The following table provides an overview of the structures provided, their names, and a brief description of their functions.
NOTE – each group of rows starting with an entry in the left column (e.g. ‘minf’, ‘?vc?’) document a containment structure within that container; the higher level containment is not shown.
Table 5 – Box, sample entry and group structures for MVC and MVD streams
	
	
	
	
	Box Name
	Brief Description

	minf
	
	
	
	Media Information Box
	

	
	mvci
	
	
	Multiview Information Box
	

	
	
	mvcg
	
	Multiview Group Box
	Specifies a multiview group for the views of the multiview video stream that are output

	
	
	
	buff
	Buffering Information Box
	Contains the buffering information of the bitstream subset specified by the multiview group

	
	
	
	mvra
	Multiview Relation Attribute Box
	Indicates the relation of the tracks or tiers of the respective multiview group with each other (when contained in a Multiview Group box)

	
	
	
	tibr
	Tier Bit Rate Box
	Provides information about the bit rate values of the bitstream subset specified by the multiview group

	
	
	
	tiri
	Tier Information Box
	Provides information about the profile, level, frame size, discardability, and frame-rate of the bitstream subset specified by the multiview group

	
	
	
	vwdi
	Multiview Scene Information Box
	Indicates the maximum disparity in a scene with multiple views

	
	
	swtc
	
	Multiview Group Relation Box
	Specifies a set of multiview groups from which one multiview group is decoded and played at any time

	
	
	
	mvra
	Multiview Relation Attribute Box
	Indicates the relation of the multiview groups with each other (when contained in a Multiview Group Relation box)

	?vc?
	
	
	
	Sample Entry
	(Note: various codes are used for sample entries)

	
	vsib
	
	
	View Scalability Information SEI Message Box
	Contains an SEI NAL unit containing only a view scalability information SEI message as specified in ISO/IEC 14496-10 Annex H

	
	ecam
	
	
	Extrinsic Camera Parameters Box
	Contains camera parameters that define the location and orientation of the camera reference frame with respect to a known world reference frame

	
	icam
	
	
	Intrinsic Camera Parameters Box
	Contains camera parameters that link the pixel coordinates of an image point with the corresponding coordinates in the camera reference frame

	
	vwid
	
	
	View Identifier Box
	Indicates the views included in the track (when included in a sample entry)

	
	mvcP
	
	
	MVC View Priority Assignment Box
	Provides a URI containing a unique name of the method used to assign content_priority_id values for the View Priority sample grouping

	
	mvcC
	
	
	MVC Configuration Box
	

	
	mvdC
	
	
	MVD Configuration Box
	Contains the MVD decoder configuration record and the MVD depth resolution box (for MVD streams only)

	
	
	3dpr
	
	MVD Depth Resolution Box
	Provides the resolution of depth views (for MVD streams only)

	
	3sib
	
	
	MVD Scalability Information SEI Message Box
	Contains an SEI NAL unit containing only an MVD scalability information SEI message as specified in ISO/IEC 14496-10 Annex I

	sgpd
	
	
	
	Sample Group Description Box
	

	
	mvif
	
	
	Multiview Group Entry
	Contains the following boxes

	
	
	buff
	
	Buffering Information Box
	Contains the buffer information of the tier

	
	
	ldep
	
	Tier Dependency Box
	Identifies the tiers that the current tier is dependent on

	
	
	svip
	
	Initial Parameter Sets Box
	Contains parameter sets needed for decoding this tier and all the tiers it depends on

	
	
	svpr
	
	Priority Range Box
	Reports the minimum and maximum priority_id of the NAL units mapped to this tier

	
	
	tibr
	
	Tier Bit Rate Box
	Provides information about the bit rate values of a tier

	
	
	tiri
	
	Tier Information Box
	Provides information about the profile, level, frame size, discardability, and frame-rate of a tier

	
	
	vipr
	
	View Priority Box
	Labels views with priorities based on content

	
	
	vwid
	
	View Identifier Box
	Indicates the views included in the tier (when included in a Multiview Group entry,)

	
	dtrt
	
	
	Decode Re-timing Group Entry
	Provides adjusted decoding times when high temporal layers are discarded

	
	scnm
	
	
	Sample Map Group Entry
	Provides the mapping of NAL units to multiview groups for all samples in the track

The structures within a sample entry provide information for the decoding or use of the samples (video information) that are associated with that sample entry. Sample groups provide time-varying information about the track as a whole, assisting (for example) with the extraction of subsets of the media within a track. Information in the Multiview Information Box (appearing in the media information box) can span several tracks and is descriptive of collections of tracks, even though the Multiview Information Box resides in the track containing the base view of the stream.
[bookmark: _Toc232234501][bookmark: _Toc370302975][bookmark: _Toc370303291][bookmark: _Toc374356427]MVC and MVD Track Structures
MVC and MVD streams are stored in accordance with 5.2, with the following definition of an MVC or MVD video elementary stream:
· MVC and MVD Video Elementary Streams shall contain all video coding related NAL units (i.e. those NAL units containing video data or signalling video structure) and may contain non-video coding related NAL units such as SEI messages and access unit delimiter NAL units. Also Aggregators (see A.2) or Extractors (see A.3) may be present. Aggregators and Extractors shall be processed as defined in this International Standard (e.g. shall not directly be placed in the output buffer while accessing the file). Other NAL units that are not expressly prohibited may be present, and if they are unrecognized they should be ignored (e.g. not placed in the output buffer while accessing the file).
MVC and MVD streams may also be stored using associated parameter set streams, when needed.
For MVC and MVD streams, Table 2 is amended by the following table. [Ed. (YK): The following table is incomplete, e.g. the situations for PPS, SPS, and SPS extension NAL units as well as other types of NAL units in MVC or MVD video streams are not specified. On the other hand, this table is only informative as the normative aspects are all specified elsewhere. Therefore, it would be less confusing to just remove the table.]
Table 6 – NAL Unit types in MVC, MVD, and AVC Streams
	Value of nal_unit_type
	Description
	AVC video elementary stream
	MVC video elementary stream (sample entry 'avc1', 'avc2', 'mvc1', or 'mvc2')
	MVC video elementary stream (sample entry name 'avc3', 'avc4', 'mvc3', or 'mvc4')
	Parameter set elementary stream

	14
	Prefix NAL unit
prefix_nal_unit_rbsp()
	Not specified
	Yes
	Yes
	No

	15
	Subset sequence parameter set
subset_seq_parameter_set_rbsp()
	Not specified
	No
	Yes
Parameter set elementary stream shall not be used
	Yes

	20
	Coded slice extension
slice_layer_extension_rbsp()
	Not specified
	Yes
	Yes
	No

	21
	Coded slice extension for depth view components
slice_layer_extension_rbsp()
	Not specified
	Not specified
	Not specified
	No

	24 – 29
	Not specified
	Not specified
	Not specified
	Not specified
	Not specified

	30
	Aggregator
	Not specified
	Yes
	Yes
	No

	31
	Extractor
	Not specified
	Yes
	Yes
	No

There may be AVC VCL NAL units, MVC VCL NAL units and non-VCL NAL units present in an MVC video elementary stream. There may be AVC VCL NAL units, MVC VCL NAL units, depth VCL NAL units, and non-VCL NAL units present in an MVD video elementary stream. Additionally, there may be Aggregator or Extractor NAL units present in an MVC or MVD video elementary stream.
An AVC VCL NAL unit in an MVC or MVD video elementary stream conforming to one or more profiles specified in Annex H or Annex I of ISO/IEC 14496-10 shall be immediately preceded by a prefix NAL unit. In this part of this International Standard, an AVC VCL NAL unit and the immediately preceding prefix NAL unit are logically seen as one NAL unit.
[bookmark: _Toc374356428][bookmark: _Toc232234502][bookmark: _Toc370302976][bookmark: _Toc370303292]Use of the plain AVC File Format
The MVC or MVD file format is an extension of the plain AVC file format defined in clause 5 of this part of this International Standard.
Clause 5.4.5 is defined for use with plain AVC streams. Its use with MVC and MVD streams is deprecated.
[bookmark: _Toc374356429][bookmark: _Toc232234503][bookmark: _Toc370302977][bookmark: _Toc370303293]Sample and configuration definition
Introduction
MVC Sample: An MVC sample consists of one or more view components as defined in Annex H of ISO/IEC 14496-10 and the associated non-VCL NAL units.
MVD Sample: An MVD sample consists of one or more view components as defined in Annex I of ISO/IEC 14496-10 and the associated non-VCL NAL units, where each view component may contain a texture view component, a depth view component or both.
Canonical Order and Restriction
Restrictions
The following restrictions apply to MVC and MVD data in addition to the requirements in clause 5.3.2.
· MVC coded slice NAL units (Coded slice extension): All MVC coded slice NAL units for a single instant in time shall be contained in the sample whose composition time is that of the picture represented by the access unit. An MVC sample shall contain at least one AVC or MVC VCL NAL unit.
· Depth coded slice NAL units (Coded slice extension): All depth coded slice NAL units for a single instant in time shall be contained in the sample whose composition time is that of the picture represented by the access unit. An MVD sample shall contain at least one AVC, MVC or depth VCL NAL unit.
· Prefix NAL units: Each prefix NAL unit is placed immediately before the corresponding AVC VCL NAL unit.
· Aggregators/Extractors: The order of all NAL units included in an Aggregator or referenced by an Extractor is exactly the decoding order as if these NAL units were present in a sample not containing aggregators or extractors. After processing the Aggregator or the Extractor, all NAL units must be in valid decoding order as specified in ISO/IEC 14496-10.
Decoder Configuration Record
[Ed. (YK): This section should be Section 7.5.3, one level higher.]
[bookmark: _Ref340837526]MVC Decoder Configuration Record
When the AVC decoder configuration record (as defined in clause 5.3.3.1) is used for a stream that can be interpreted as either an MVC or AVC stream, the AVC decoder configuration record shall reflect the properties of the AVC compatible base view, e.g. it shall contain only parameter sets needed for decoding the AVC base view.
If the sample entry name is 'mvc1' or 'mvc2', a parameter set stream may be used with MVC streams, as with AVC streams. In that case, parameter sets shall not be included in the decoder configuration record. Otherwise (the sample entry name is 'mvc3' or 'mvc4'), parameter sets may be stored in both the decoder configuration record or as part of samples while a parameter set elementary stream shall not be used.
Sequence parameter sets, including subset sequence parameter sets, are numbered in order of storage from 1 to numOfSequenceParameterSets or numOfPictureParameterSets, respectively. Sequence and picture parameter sets stored in this record in a file may be referenced using this 1-based index by the InitialParameterSetBox.
The MVCDecoderConfigurationRecord is structurally identical to an AVCDecoderConfigurationRecord. However, the reserved bits preceding and succeeding the lengthSizeMinusOne field are re-defined. The syntax is as follows:
aligned(8) class MVCDecoderConfigurationRecord {
	unsigned int(8) configurationVersion = 1;
	unsigned int(8) AVCProfileIndication;
	unsigned int(8) profile_compatibility;
	unsigned int(8) AVCLevelIndication;
	bit(1) complete_representation;
	bit(1) explicit_au_track;
	bit(4) reserved = ‘1111’b;
	unsigned int(2) lengthSizeMinusOne;
	bit(1) reserved = ‘0’b;
	unsigned int(7) numOfSequenceParameterSets;
	for (i=0; i< numOfSequenceParameterSets; i++) {
		unsigned int(16) sequenceParameterSetLength ;
		bit(8*sequenceParameterSetLength) sequenceParameterSetNALUnit;
	}
	unsigned int(8) numOfPictureParameterSets;
	for (i=0; i< numOfPictureParameterSets; i++) {
		unsigned int(16) pictureParameterSetLength;
		bit(8*pictureParameterSetLength) pictureParameterSetNALUnit;
	}
}
The semantics of the fields AVCProfileIndication, profile_compatibility, and AVCLevelIndication differ from the AVCDecoderConfigurationRecord as follows:
The fields AVCProfileIndication, AVCLevelIndication carry the profile and level indications, respectively, indicating the profile and level for the bitstream represented by this track, i.e., the bitstream that contains all the views of this track and the views required for decoding of this track and wherein all the views in this track are the target output views. If AVCLevelIndication is equal to 0, the level that applies to the bitstream defined above operating with all the views of this track being the target output views is unspecified. AVCProfileIndication, profile_compatibility, and AVCLevelIndication, if non-zero, must have values such that a conforming MVC decoder is able to decode bitstreams conforming to the profile, level and profile compatibility flags indicated in any of the sequence parameter sets or subset sequence parameter sets contained in this record.
The semantics of other fields are as follows, or, if not present in the following, are as defined for an AVCDecoderConfigurationRecord:
complete_representation is set on a minimal set of tracks that contain a portion of the original encoded stream, as defined in 7.6.1. Other tracks may be removed from the file without loss of any portion of the original encoded bitstream, and, once the set of tracks has been reduced to only those in the complete subset, any further removal of a track removes a portion of the encoded information.
explicit_au_track is set on a track that is ‘complete’; it is not necessary to determine the view dependencies, nor calculate whether views not present in this track must be found from other tracks. However, subject to the rules for the sample entry types, extractors may be present and need to be followed to gather all the NAL units needed.
numOfSequenceParameterSets indicates the number of SPSs and subset SPSs that are used for decoding the MVC elementary stream.
SequenceParameterSetLength indicates the length in bytes of the SPS or subset SPS NAL unit.
SequenceParameterSetNALUnit contains a SPS or subset SPS NAL unit as specified in Annex H of ISO/IEC 14496-10. SPSs shall occur in order of ascending parameter set identifier with gaps being allowed. Subset SPSs shall occur in order of ascending parameter set identifier with gaps being allowed. Any SPS shall occur before all the subset SPSs, if any.
MVD Decoder Configuration Record
The syntax structure of MVDDecoderConfigurationRecord is exactly the same as MVCDecoderConfigurationRecord.
When the AVC decoder configuration record (as defined in clause 5.3.3.1) is used for a stream that can be interpreted as an MVD stream, the AVC decoder configuration record shall reflect the properties of the AVC compatible base view, e.g. it may contain only parameter sets needed for decoding the AVC base view.
When the MVC decoder configuration record (as defined in subclause 7.5.2.2.1) is used for a stream that can be interpreted as an MVC or MVD stream, the MVC decoder configuration record shall reflect the properties of the MVC compatible bitstream subset (i.e. the bitstream subset with only the texture views), e.g. it may contain only parameter sets needed for decoding the MVC compatible bitstream subset.
If the sample entry name is 'mvd1' or 'mvd2', a parameter set stream may be used with MVD streams, as with AVC and MVC streams. In that case, parameter sets shall not be included in the decoder configuration record. Otherwise (the sample entry name is 'mvd3' or 'mvd4'), parameter sets may be stored in both the decoder configuration record or as part of samples while a parameter set elementary stream shall not be used.
Sequence parameter sets, including subset sequence parameter sets, are numbered in order of storage from 1 to numOfSequenceParameterSets or numOfPictureParameterSets, respectively. Sequence and picture parameter sets stored in this record in a file may be referenced using this 1-based index by the InitialParameterSetBox.
The semantics of the fields AVCProfileIndication, profile_compatibility, and AVCLevelIndication differ from the MVCDecoderConfigurationRecord as follows. AVCProfileIndication, profile_compatibility, and AVCLevelIndication, if non-zero, must have values such that a conforming MVD decoder is able to decode bitstreams conforming to the profile, level and profile compatibility flags indicated in any of the sequence parameter sets or subset sequence parameter sets contained in this record.
The semantics of other fields are as follows, or, if not present, are as defined for an MVCDecoderConfigurationRecord:
numOfSequenceParameterSets indicates the number of SPSs and subset SPSs that are used for decoding the MVD elementary stream.
SequenceParameterSetNALUnit contains a SPS or subset SPS NAL unit as specified in Annex I of ISO/IEC 14496-10. SPSs shall occur in order of ascending parameter set identifier with gaps being allowed. Subset SPSs shall occur in order of ascending parameter set identifier with gaps being allowed. Any SPS shall occur before all the subset SPSs, if any.
Sync Sample (IDR)
[Ed. (YK): Subclauses 7.5.3 to 7.5.6 should belong to sublcause 7.6 (Derivation from the ISO base media file format) instead of 7.5 (Sample and configuration definition). We could simply move the section number of title of sublcause 7.6 before this section number and title if we don't have to keep the old section numbers.]
A sync sample identifies the presence of an IDR access unit of the MVC or MVD bitstream for any sample entry that includes an MVC or MVD configuration record, respectively.
For video data described by a sample entry of type 'mvc3', 'mvc4', 'mvd3', or 'mvd4', the following applies:
1. If the sample is an IDR access unit, all parameter sets needed for decoding that sample shall be included either in the sample entry or in the sample itself.
2. Otherwise (the sample is not an IDR access unit), all parameter sets needed for decoding the sample shall be included either in the sample entry or in any of the samples since the previous random access point to the sample itself, inclusive.
Shadow sync
A shadow sync box shall not be used for video data described by any MVC or MVD sample entry. Its use for MVC or MVD is deprecated.
Independent and disposable samples box
If it is used in a track which is both AVC and MVC compatible, then care should be taken that the statements are true no matter what valid subset of the MVC data (possibly only the AVC data) is used. The ‘unknown’ values (value 0 of the fields sample-depends-on, sample-is-depended-on, and sample-has-redundancy) may be needed if the information varies.
If it is used in a track which is compatible to all of AVC, MVC and MVD, then care should be taken that the statements are true no matter what valid subset of the MVD data (possibly only the AVC data or only the MVC data) is used. The ‘unknown’ values (value 0 of the fields sample-depends-on, sample-is-depended-on, and sample-has-redundancy) may be needed if the information varies.
Sample groups on random access recovery points and random access points
For video data described by a sample entry of type ‘avc1’, ‘avc2’, 'avc3' or 'avc4', the random access recovery sample group and the random access point sample group identify random access recovery points and random access points, respectively, for all of an AVC decoder, an MVC decoder (if any), and an MVD decoder (if any) operating on the entire bitstream.
For video data described by an MVC sample entry type, the random access recovery sample group identifies random access recovery in the entire MVC bitstream and the random access point sample group identifies random access points in the entire MVC bitstream.
For video data described by an MVD sample entry type, the random access recovery sample group identifies random access recovery in the entire MVD bitstream and the random access point sample group identifies random access points in the entire MVD bitstream.
When version 0 of the SampleToGroupBox is used for the random access point sample grouping, it applies to the samples as interpreted by a reader for the sample entry of the track.
NOTE	For example, if a track contains NAL units for texture and depth views of an MVC+D bitstream and ‘avc1’ sample entry is used for the track, the random access point sample grouping applies to the AVC-coded base view only.
When version 1 of the SampleToGroupBox is used for the random access point sample grouping, the grouping_type_parameter specifies the tier_id value of the layer(s) or view(s) that are refreshed in the associated sample.
[bookmark: _Toc374356430][bookmark: _Toc232234504][bookmark: _Toc370302978][bookmark: _Toc370303294]Derivation from the ISO base media file format
[bookmark: _Ref201138913]MVC and MVD track structures
An MVC or MVD stream is represented by one or more video tracks in a file. Each track represents one or more views of the stream. For a track in a file storing an MVD video stream, the track may contain texture only, depth only or both texture and depth.
There is a minimal set of one or more tracks that, when taken together, contain the complete set of encoded information. All these tracks shall have the flag “complete_representation” set in all their sample entries. This group of tracks that forms the complete encoded information is called the “complete subset”.
The track that has the flag “complete_representation” set and contains NAL units of the base view with temporal_id equal to 0 shall be nominated as the ‘base view track’. All the other tracks that are part of the same stream shall be linked to this base track by means of a track reference of type ‘sbas’ (view base). The complete encoded information can be retained when the tracks included in the “complete subset” are retained; all other tracks shall be subsets, copies or re-orderings of the complete subset.
All the tracks sharing the same base view track must share the same timescale as the scalable base track. For MVD streams, all the tracks containing the texture view and the depth view of a particular view must share the same timescale. Note that the texture view and the depth view of a particular view have the same value of view_id.
If a view represented by a track uses another view represented by another track as an inter-view prediction reference, a track reference of type 'scal' shall be included in the track referring to the source track for inter-view prediction.
For MVD streams, if a depth view is stored in a different track than the track containing the texture view associated with the depth view, a track reference of type 'deps' shall be included in the track containing the depth view, referring to the track containing the texture view. The presence of this track reference indicates that the current track contains the depth view that is associated with a texture view in the referenced track.
If edits are applied to tracks that contain view components of an MVC or MVD bitstream, edit lists shall be consistent over all tracks affected by the edits.
NOTE	If a track containing a part of an MVC or MVD bitstream is removed from a file, care should be taken to remove also those tracks that contain 'scal' and 'sbas' track references to the removed track and references to the multiview groups that include the removed track.
[bookmark: _Ref201138844]Reconstruction of an access unit
In order to reconstruct an access unit from samples of one or more MVC or MVD tracks, the target output views may need to be determined first, by examining the Multiview Group box (7.7.3) and the Multiview Group Relation box (7.7.4). The explicit_au_track flag equal to 1 states that this track is a complete operating point; nonetheless, the track should be examined to determine which views delivered by this track are the output views.
If the target output views are not exactly represented by any track marked with explicit_au_track equal to 1 in the MVC decoder configuration record, access units are reconstructed as follows.
The views that are required for decoding the determined target output views can be concluded from reference view identifiers included in the View Identifier box, the ‘scal’ track references, or Tier Dependency boxes.
If several tracks contain data for the access unit, the alignment of respective samples in tracks is performed on decoding time, i.e. using the time-to-sample table only without considering edit lists.
An access unit is reconstructed from the respective samples in the required tracks and tiers by arranging their NAL units in an order conforming to ISO/IEC 14496-10. The following order provides an outline of the procedure to form a conforming access unit:
· All parameter set NAL units (from the associated parameter set tracks and from the associated elementary stream tracks).
· All SEI NAL units (from the associated parameter set tracks and from the associated elementary stream tracks).
· View components in ascending order of view order index value.
· Within a view component, if both texture and depth are present, then the texture view component precedes the depth view component.
· NAL units within a texture or depth view component are in their appearance order within the sample.
Sample Entry
Boxes for Sample Entry
[bookmark: _Ref201139106]Intrinsic Camera Parameters Box
Definition
Box Type:	‘icam’
Container:	Sample Entry (‘avc1’, ‘avc2’, 'avc3', 'avc4',
		‘mvc1’, ‘mvc2’, 'mvc3', 'mvc4',
		‘mvd1’, ‘mvd2’, 'mvd3', 'mvd4')
Mandatory:	No
Quantity:	Zero or more
This subclause specifies intrinsic camera parameters that link the pixel coordinates of an image point with the corresponding coordinates in the camera reference frame. A specification of focal length and parameters related to the geometric distortion due to camera optics is given in Annex H of ISO/IEC 14496-10.
Syntax
class IntrinsicCameraParametersBox extends FullBox (‘icam’, version=0, flags) {
	unsigned int(6) 	reserved=0;
	unsigned int(10) 	ref_view_id;
	unsigned int(32)	prec_focal_length;
	unsigned int(32)	prec_principal_point;
	unsigned int(32)	prec_skew_factor;
	unsigned int(8)	exponent_focal_length_x;
	signed int(64)	mantissa_focal_length_x;
	unsigned int(8)	exponent_focal_length_y;
	signed int(64)	mantissa_focal_length_y;
	unsigned int(8)	exponent_principal_point_x;
	signed int(64)	mantissa_principal_point_x;
	unsigned int(8)	exponent_principal_point_y;
	signed int(64)	mantissa_principal_point_y;
	unsigned int(8)	exponent_skew_factor;
	signed int(64)	mantissa_skew_factor;
}
Semantics
reserved this field shall be equal to zero
ref_view_id indicates the view_id identifying a view for which intrinsic camera parameters are indicated in this Intrinsic Camera Parameters Box
prec_focal_length specifies the exponent of the maximum allowable truncation error for focal_length_x and focal_length_y as given by 2-prec_focal_length. The value of prec_focal_length shall be in the range of 0 to 31, inclusive.
prec_principal_point specifies the exponent of the maximum allowable truncation error for principal_point_x and principal_point_y as given by 2-prec_principal_point. The value of prec_principal_point shall be in the range of 0 to 31, inclusive.
prec_skew_factor specifies the exponent of the maximum allowable truncation error for skew factor as given by 2­prec_skew_factor. The value of prec_skew_factor shall be in the range of 0 to 31, inclusive.
exponent_focal_length_x specifies the exponent part of the focal length in the horizontal direction. The value of exponent_focal_length_x shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future use by ITU‑T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified focal length.
mantissa_focal_length_x specifies the mantissa part of the focal length of the i-th camera in the horizontal direction.
exponent_focal_length_y specifies the exponent part of the focal length in the vertical direction. The value of exponent_focal_length_y shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future use by ITU‑T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified focal length.
mantissa_focal_length_y specifies the mantissa part of the focal length in the vertical direction.
mantissa_principal_point_x specifies the mantissa part of the principal point in the horizontal direction.
exponent_principal_point_y specifies the exponent part of the principal point in the vertical direction. The value of exponent_principal_point_y shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future use by ITU‑T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified principal point.
mantissa_principal_point_y specifies the mantissa part of the principal point in the vertical direction.
exponent_skew_factor specifies the exponent part of the skew factor. The value of exponent_skew_factor shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future use by ITU‑T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified skew factor.
mantissa_skew_factor specifies the mantissa part of the skew factor.
The intrinsic matrix A for the camera associated to the view indicated by ref_view_id is represented as follows:

Each component of the intrinsic matrix is obtained from the variables specified in Table 7 as the variable x computed as follows.
	–	If 0 < e < 63, x = 2e-31 * (1 + n  2v), with v = max(0, e + p - 31) 	[Eq. F-1]
	–	If e is equal to 0, x = 2-(30+v) * n, with v = max(0, p - 30) 	[Eq. F-2]
[bookmark: _Ref358372143]Table 7 – Association between camera parameter variables and syntax elements
	x
	e
	n
	p

	focalLengthX
	exponent_focal_length_x
	mantissa_focal_length_x
	prec_focal_length

	focalLengthY
	exponent_focal_length_y
	mantissa_focal_length_y
	prec_focal_length

	principalPointX
	exponent_principal_point_x
	mantissa_principal_point_x
	prec_principal_point

	principalPointY
	exponent_principal_point_y
	mantissa_principal_point_y
	prec_principal_point

	skewFactor
	exponent_skew_factor
	mantissa_skew_factor
	prec_skew_factor

Extrinsic Camera Parameters Box
Definition
Box Type:	‘ecam’
Container:	Sample Entry (‘avc1’, ‘avc2’, 'avc3', 'avc4',
		‘mvc1’, ‘mvc2’, 'mvc3', 'mvc4',
		‘mvd1’, ‘mvd2’, 'mvd3', 'mvd4')
Mandatory:	No
Quantity:	Zero or more
This subclause specifies extrinsic camera parameters that define the location and orientation of the camera reference frame with respect to a known world reference frame. A specification of extrinsic camera parameters including translation vector and rotation matrix is given in Annex H of ISO/IEC 14496-10.
The extrinsic camera parameters are specified according to a right-handed coordinate system, where the upper left corner of the image is the origin, i.e., the (0, 0) coordinate, with the other corners of the image having non-negative coordinates. With these specifications, a 3-dimensional world point, wP=[x y z] is mapped to a 2-dimensional camera point, cP = [u v 1], according to:
s * cP = A * R-1 * (wP – T)
where A denotes the intrinsic camera parameter matrix which can be indicated by an intrinsic camera parameters box (see 7.6.3.1.1), R-1 denotes the inverse of the rotation matrix R, T denotes the translation vector, and s (a scalar value) is an arbitrary scale factor chosen to make the third coordinate of cP equal to 1. The elements of A, R, T are determined according the syntax elements signalled in this box and as specified below.
Syntax
class ExtrinsicCameraParametersBox extends FullBox (‘ecam’, version=0, flags) {
	unsigned int(6) 	reserved=0;
	unsigned int(10) 	ref_view_id;
	unsigned int(8)	prec_rotation_param;
	unsigned int(8)	prec_translation_param;
	for (j=1; j<=3; j++) { /* row */		
		for (k=1; k<=3; k++) { /* column */
			unsigned int(8)	exponent_r[j][k];
			signed int(64)	mantissa_r [j][k];
		}
		unsigned int(8)	exponent_t[j];
		signed int(64)	mantissa_t[j];
	}
}
Semantics
reserved this field shall be equal to zero
ref_view_id indicates the view_id identifying a view for which intrinsic camera parameters are indicated in this Intrinsic Camera Parameters Box
prec_rotation_param specifies the exponent of the maximum allowable truncation error for r[j][k] as given by 2­prec_rotation_param. The value of prec_rotation_param shall be in the range of 0 to 31, inclusive.
prec_translation_param specifies the exponent of the maximum allowable truncation error for t[j] as given by 2­prec_translation_param. The value of prec_ translation_param shall be in the range of 0 to 31, inclusive.
exponent_r[j][k] specifies the exponent part of (j, k) component of the rotation matrix. The value of exponent_r[j][k] shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future use by ITU‑T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified rotation matrix.
mantissa_r[j][k] specifies the mantissa part of (j, k) component of the rotation matrix.
exponent_t[j] specifies the exponent part of the j-th component of the translation vector. The value of exponent_t[j] shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future use by ITU T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified translation vector.
mantissa_t[j] specifies the mantissa part of the j-th component of the translation vector.
The rotation matrix R is represented as follows:

The translation vector T is represented as follows:

Each component of the rotation matrix and the translation vector is obtained from the variables specified in Table 8 as the variable x computed as follows.
	–	If 0 < e < 63, x = 2e-31 * (1 + n  2v), with v = max(0, e + p - 31) 	[Eq. F-3]
	–	If e is equal to 0, x = 2-(30+v) * n, with v = max(0, p - 30) 	[Eq. F-4]
[bookmark: _Ref358372218]Table 8 – Association between camera parameter variables and syntax elements
	x
	e
	n
	p

	rE[j][k]
	exponent_r[j][k]
	mantissa_r[j][k]
	prec_rotation_param

	tE[j]
	exponent_t[j]
	mantissa_t[j]
	prec_translation_param

View Identifier Box
Definition
Box Type:	‘vwid’
Container:	Sample Entry (‘avc1’, ‘avc2’, 'avc3', 'avc4',
			‘mvc1’, ‘mvc2’, 'mvc3', 'mvc4',
			‘mvd1’, ‘mvd2’, 'mvd3', 'mvd4')
			or MultiviewGroupEntry
Mandatory:	Yes (for sample entries and the primary group definition in Multiview Group entries)
Quantity:	Exactly one (for sample entries and the primary group definition in Multiview Group entries)
	Zero for non-primary group definitions in Multiview Group entries
When included in a sample entry, this box indicates the views included in the track. When included in a Multiview Group entry, this box indicates the views included in the respective tier. This box also indicates the view order index for each listed view. Additionally, the box includes the minimum and maximum values of temporal_id included in the track or tier when the View Identifier box is included in a sample entry or Multiview Group entry, respectively. Moreover, the box indicates the referenced views required for decoding the views included in the track or tier. Moreover, for MVD streams, the box indicates, for each of the view included in the track, the presence of texture and/or depth in the track and in the stream.
[Ed. (DS?): Would the view identifier box be better as two boxes (one for textures, one for depths)?]
Syntax
class ViewIdentifierBox extends FullBox (‘vwid’, version=0, flags)
{
	unsigned int(2) reserved6 = 0;
	unsigned int(3) min_temporal_id;
	unsigned int(3) max_temporal_id;
	unsigned int(16)	num_views;
	for (i=0; i<num_views; i++) {
		unsigned int(6)	reserved1 = 0;
		unsigned int(10)	view_id[i];
		unsigned int(6)	reserved2 = 0;
		unsigned int(10)	view_order_index;
		unsigned int(1)	texture_in_stream[i];
		unsigned int(1)	texture_in_track[i];
		unsigned int(1)	depth_in_stream[i];
		unsigned int(1)	depth_in_track[i];
		unsigned int(2)	base_view_type;
		unsigned int(10)	num_ref_views;
		for (j = 0; j < num_ref_views; j++) {
			unsigned int(4) 	reserved5 = 0;
			unsigned int(2) 	dependent_component_idc[i][j];
			unsigned int(10) 	ref_view_id[i][j];
		}
	}
}
[Ed. (DS): Do we need/want the texture_in_stream or depth_in_stream flags, especially if their values are fragile with respect to extraction etc.?]
Semantics
min_temporal_id, max_temporal_id take the minimum and maximum value, respectively, of the temporal_id syntax element that is present in the NAL unit header extension of the NAL units mapped to the track or tier when the View Identifier box is included in a sample entry or Multiview Group entry, respectively. For AVC streams this takes the value that is, or would be, in the prefix NAL unit.
num_views, when the View Identifer box is present in a sample entry, indicates the number of views included in the track. When the View Identifier box is present in a Multiview Group entry, num_views indicates the number of views included in the respective tier.
view_id[i] indicates the value of the view_id syntax element in the NAL unit header extension of a view included in the track or tier when the View Identifier box is included in a sample entry or Multiview Group entry, respectively.
view_order_index indicates the value of the VOIdx variable, as specified in Annex H of ISO/IEC 14496-10, for a view included in the track or tier when the View Identifier box is included in a sample entry or Multiview Group entry, respectively.
texture_in_stream[i] equal to 1 indicates that the texture view for the view with view_id[i] is present in the stream. The value indicates that the texture view for the view with view_id[i] is not present in the stream.
texture_in_track[i] equal to 1 indicates that the texture view for the view with view_id[i] is present in the track. The value indicates that the texture view for the view with view_id[i] is not present in the track. When texture_in_stream[i] is equal to 0, the value of texture_in_track[i] shall be equal to 0.
depth_in_stream[i] equal to 1 indicates that the depth view for the view with view_id[i] is present in the stream. The value indicates that the depth view for the view with view_id[i] is not present in the stream. When texture_in_stream[i] is equal to 0, the value of depth_in_stream[i] shall be equal to 1.
depth_in_track[i] equal to 1 indicates that the depth view for the view with view_id[i] is present in the track. The value indicates that the depth view for the view with view_id[i] is not present in the track. When depth_in_stream[i] is equal to 0, the value of depth_in_track[i] shall be equal to 0. When texture_in_track[i] is equal to 0, the value of depth_in_track[i] shall be equal to 1.
base_view_type indicates whether the view is a base view (virtual or not). It takes the following values:
0 indicates that the view is neither a base view nor virtual base view.
1 shall be used to label the non-virtual base view of the MVC bitstream.
2 is a reserved value and shall not be used.
3 indicates that the view with view_id[i] is a virtual base view. The respective independently coded non-base view with view_id[i] resides in another track. When base_view_type is equal to 3, the subsequent num_ref_views shall be equal to 0.
num_ref_views indicates the number of views that may be directly or indirectly referenced by the view with view_id[i].
dependent_component_idc[i][j] indicates how the texture view and depth view of the j-th reference view are required for decoding the view with view_id[i]. If the value is equal to 0, only the texture view of the reference view is required. If the value is equal to 1, only the depth view of the reference view is required. If the value is equal to 2, both texture view and depth view of the reference view are required. The value of 3 is reserved.
ref_view_id[i][j] indicates the view identifier of the j-th view that may be directly or indirectly referenced by the view with view_id[i], i.e., that may be required for decoding of the view with view_id[i]. If a view is required for decoding the view with view_id[i], it shall be listed as one of ref_view_id[i][j]. When the View Identifier box is included in a sample entry, it is recommended to indicate the referenced views for both anchor and non-anchor access units in the same sample entry.
MVC and MVD Sample Entry Definitions
Definition
Sample Entry Types:	‘avc1’, ‘avc2’, 'avc3', 'avc4', ‘mvc1’, ‘mvc2’, 'mvc3', 'mvc4',
			‘mvd1’, ‘mvd2’, ‘mvd3’, ‘mvd4’
Container:	Sample Description Box (‘stsd’)
Mandatory:	One of the above listed sample entries is mandatory
Quantity:	One or more sample entries may be present
When present, the AVC Configuration Box documents the Profile, Level, and possibly also parameter sets pertaining to the AVC compatible base view as defined by the AVCDecoderConfigurationRecord. When present, the MVC Configuration Box documents the Profile, Level and Parameter Set information pertaining to the entire MVC stream as defined by the MVCDecoderConfigurationRecord. When present, the MVD Configuration Box documents the Profile, Level and Parameter Set information pertaining to the entire MVD stream as defined by the MVDDecoderConfigurationRecord.
For the AVC sample entries ‘avc1’, ‘avc2’, 'avc3' and 'avc4', the width and height fields in the sample entry document the AVC base layer. For the MVC sample entries ‘mvc1’, ‘mvc2’, 'mvc3', and 'mvc4', and for the MVD sample entries ‘mvd1’, ‘mvd2’, ‘mvd3’, and ‘mvd4’, the width and height fields in the sample entry document the resolution achieved by decoding any single texture view of the entire MVC or MVD stream. Futhermore, for MVD sample entries ‘mvd1’, ‘mvd2’, ‘mvd3’, and ‘mvd4’, the depth_width and depth_height in the MVDDepthResolutionBox document the resolution achieved by decoding any single depth view of the entire MVD stream.
The lengthSizeMinusOne field in the AVC, MVC, and MVD configurations in any given sample entry shall have the same value.
A priority assignment URI provides the name (in the URI space) of a method used to assign priority_id values. When it occurs in an AVC, MVC, or MVD sample entry, exactly one URI shall be present, that documents the priority_id assignments in the entire AVC, MVC, or MVD stream. The URI is treated here as a name only; it should be de-referenceable, though this is not required. File readers may be able to recognize some methods and thereby know what stream extraction operations based on priority_id would do.
The requirements for the sample entry types ‘avc1’ and ‘avc2’ as documented in 6.5.3.1.1 also apply here.
When present in an AVC, an MVC or MVD sample entry, ViewScalabilityInfoSEIBox, ViewIdentifierBox, IntrinsicCameraParametersBox, ExtrinsicCameraParametersBox, MVDScalabilityInformationSEIBox, MPEG4BitRateBox and MPEG4ExtensionDescriptorsBox apply to the entire AVC, MVC or MVD stream.
The parameter sets required to decode a NAL unit that is present in the sample data of a video stream, either directly or by reference from an Extractor, shall be present in the decoder configuration of that video stream or in the associated parameter set stream (if used).
The following table shows for a video track all the possible uses of sample entries, configurations, and the MVC tools (excluding timed metadata, which is always used in another track).
Table 9 – Use of sample entries for AVC, MVC, and MVD tracks
	sample entry name
	with configuration records
	Meaning

	‘avc1’ or 'avc3'
	AVC Configuration Only
	A plain AVC track with AVC NAL units only; Extractors, aggregators, and tier grouping shall not be present.

	‘avc2’ or 'avc4'
	AVC Configuration Only
	A plain AVC track with AVC NAL units only; Extractors may be present; Aggregators may be present to contain and reference AVC NAL units; Tier grouping may be present.

	‘avc1’ or 'avc3'
	AVC and MVC Configurations
	An MVC track with both AVC and MVC NAL units; Aggregators and extractors may be present; Aggregators shall not contain but may reference AVC NAL units; Tier grouping may be present.

	‘avc2’ or 'avc4'
	AVC and MVC Configurations
	An MVC track with both AVC NAL units and MVC NAL units; Extractors may be present and used to reference both AVC and MVC NAL units; Aggregators may be present to contain and reference both AVC and MVC NAL units; Tier grouping may be present.

	‘mvc1’ or 'mvc3'
	MVC Configuration Only
	An MVC track without a usable AVC base layer; Aggregators may be present to contain and reference both AVC and MVC NAL units; Tier grouping may be present.

	‘mvc2’ or 'mvc4'
	MVC Configuration Only
	An MVC track without a usable AVC base layer; Extractors may be present and used to reference MVC NAL units; Aggregators may be present to contain and reference MVC NAL units; Tier grouping may be present.

	‘avc1’ or 'avc3'
	AVC, MVC, and MVD Configurations
	An MVD track with AVC, MVC and depth NAL units; Aggregators and extractors may be present; Aggregators shall not contain but may reference AVC NAL units; Tier grouping may be present.

	‘mvc1’ or 'mvc3'
	MVC and MVD Configurations
	An MVD track without AVC NAL units but with MVC and depth NAL units; Aggregators and tier grouping may be present.

	‘mvc2’ or 'mvc4'
	MVC and MVD Configurations
	An MVD track without AVC NAL units but with MVC and depth NAL units; Extractors, aggregators and tier grouping may be present.

	‘mvd1’ or 'mvd3'
	MVD Configuration Only
	An MVD track with depth NAL units only; Aggregators and tier grouping may be present.

	‘mvd2’ or 'mvd4'
	MVD Configuration Only
	An MVD track with depth NAL units only; Extractors, aggregators and tier grouping may be present.

Syntax
class MVCConfigurationBox extends Box(‘mvcC’) {
	MVCDecoderConfigurationRecord() MVCConfig;
}
class ViewScalabilityInformationSEIBox extends Box(‘vsib’, size)
{
	unsigned int(8*size-64)	mvcscalinfosei;
}
class MVDDepthResolutionBox extends Box(‘3dpr’)
{
	unsigned int(16) depth_width;
	unsigned int(16) depth_height;
}
class MVDConfigurationBox extends Box(‘mvdC’) {
	MVDDecoderConfigurationRecord MVDConfig;
	MVDDepthResolutionBox mvdDepthRes;	//Optional
}
class MVDScalabilityInformationSEIBox extends Box(‘3sib’, size)
{
	unsigned int(8*size-64)	mvdscalinfosei;
}
class AVCMVCSampleEntry() extends AVCSampleEntry('avc1' or 'avc3') {	ViewScalabilityInformationSEIBox	scalability;	// optional
	ViewIdentifierBox		view_identifiers;	// optional
	MVCConfigurationBox	mvcconfig;		// optional
	MVCViewPriorityAssignmentBox	view_priority_method;	// optional
	IntrinsicCameraParametersBox	intrinsic_camera_params;	// optional
	ExtrinsicCameraParametersBox	extrinsic_camera_params;	// optional
	MVDConfigurationBox	mvdconfig;	// optional
	MVDScalabilityInformationSEIBox	mvdscalinfosei;	// optional
}
class AVC2MVCSampleEntry() extends AVC2SampleEntry('avc2' or 'avc4') {	ViewScalabilityInformationSEIBox	scalability;	// optional
	ViewIdentifierBox		view_identifiers;	// optional
	MVCConfigurationBox	mvcconfig;		// optional
	MVCViewPriorityAssignmentBox	view_priority_method;	// optional
	IntrinsicCameraParametersBox	intrinsic_camera_params;	// optional
	ExtrinsicCameraParametersBox	extrinsic_camera_params	// optional
	MVDConfigurationBox	mvdconfig;	// optional
	MVDScalabilityInformationSEIBox	mvdscalinfosei;	// optional
}
// Use this if the track is NOT AVC compatible
class MVCSampleEntry() extends VisualSampleEntry('mvc1', 'mvc2',
																		'mvc3', or 'mvc4') {
	MVCConfigurationBox	mvcconfig; 			// mandatory
	ViewScalabilityInformationSEIBox	scalability;	// optional
	ViewIdentifierBox	view_identifiers;		// mandatory
	MPEG4BitRateBox bitrate; 					// optional
	MPEG4ExtensionDescriptorsBox descr;		// optional
	MVCViewPriorityAssignmentBox	view_priority_method;	// optional
	IntrinsicCameraParametersBox	intrinsic_camera_params;	// optional
	ExtrinsicCameraParametersBox	extrinsic_camera_params	// optional
	MVDConfigurationBox	mvdconfig;	// optional
	MVDScalabilityInformationSEIBox	mvdscalinfosei;	// optional
}
class MVDSampleEntry() extends VisualSampleEntry ('mvd1', 'mvd2',
																	'mvd3', or 'mvd4') {
	MVDConfigurationBox	mvdconfig;		// mandatory
	MVDScalabilityInformationSEIBox	mvdscalinfosei;	// optional
	ViewIdentifierBox	view_identifiers;		// mandatory
	MPEG4BitRateBox bitrate;					// optional
	MPEG4ExtensionDescriptorsBox descr;		// optional
	MVCViewPriorityAssignmentBox	view_priority_method;	// optional
	IntrinsicCameraParametersBox	intrinsic_camera_params;	// optional
	ExtrinsicCameraParametersBox	extrinsic_camera_params	// optional
}
Semantics
When the sample entry is ‘mvc1’, ‘mvc2’, 'mvc3', or 'mvc4', Compressorname in the base class VisualSampleEntry indicates the name of the compressor used, with the value “\012MVC Coding” being recommended (\012 is 10, the length of the string “MVC coding” in bytes).
When the sample entry is ‘mvd1’, ‘mvd2’, 'mvd3', or 'mvd4', Compressorname in the base class VisualSampleEntry indicates the name of the compressor used, with the value “\012MVD Coding” being recommended (\012 is 10, the length of the string “MVD coding” in bytes).
depth_width and depth_height give the values of the width and height, respectively, of the coded depth view components, in pixels, in the stream to which the sample entry containing the MVDDepthResolutionBox() is included applies.
mvdDepthRes contains the width and height of the coded depth view components in the stream to which the sample entry applies. When not present, the width and height of the coded depth view components are inferred to be the same as the width and height of the coded texture view components.
mvcscalinfosei contains an SEI NAL unit containing only a view scalability information SEI message as specified in ISO/IEC 14496-10 Annex H. The ’size’ field of the container box ViewScalabilityInformationSEIBox shall not be equal to 0 or 1.
mvdscalinfosei contains an SEI NAL unit containing only a 3DVC scalability information SEI message as specified in ISO/IEC 14496-10 Annex I. The ’size’ field of the container box MVDScalabilityInformationSEIBox shall not be equal to 0 or 1.
[bookmark: _Toc374356431][bookmark: _Toc232234505][bookmark: _Toc370302979][bookmark: _Toc370303295]MVC specific information boxes
Introduction
The following boxes specify information that relate to more than one output view of an MVC or MVD elementary stream. As any subset of views of an MVC or MVD elementary stream can be chosen for output, the information carried in these boxes is not necessarily specific to any track and thus contained separately. The information can be specified for different groups of output views.
Multiview Information Box
Definition
Box Type:	`mvci’
Container:	Media Information Box (‘minf’)
Mandatory:	No
Quantity:	Zero or one
Located in the Media Information Box of the base view track indicated by the ‘sbas’ track reference, this box contains Multiview Group boxes, and Multiview Group Relation boxes.
Syntax
aligned(8) class MultiviewInformationBox
	extends FullBox(‘mvci’, version = 0, flags) {
}
[bookmark: _Ref201138998]Multiview Group Box
Definition
Box Type:	'mvcg'
Container:	Multiview Information box (‘mvci’)
Mandatory:	No
Quantity:	Zero or more
This box specifies a multiview group for the views of the MVC or MVD stream that are output. Target output views can be indicated on the basis of track_id, tier_id, or view_id. When the views included in a track match an operating point, it is recommended to use track_id (i.e., entry_type equal to 0) within the Multiview Group box. When multiview sample grouping is in use, and tiers cover more than one view or some tiers contain a temporal subset of the bitstream, it is recommended to use tier_id (i.e., entry_type equal to 1) within the Multiview Group box. Otherwise, it is recommended to use one of the view_id based indications (i.e., entry_type equal to 2 or 3).
When entry_type is equal to 0 or 1, the following applies. Each view in a track or tier that is included in this box is a target output view, and if a track or tier included in this box contains multiple views, all the contained views are target output views.
Decoding of the output views may require decoding of other views that are not target output views. The views that are required for decoding but are not target output views can be concluded from reference view identifiers included in the View Identifier box, the 'scal' track references, or from the Tier Dependency box.
If the box contains a track_id or tier_id that is not present or refers to a view_id of a view that is not present, the respective view should be considered removed and the multiview group should be ignored.
Syntax
aligned(8) class MultiviewGroupBox extends FullBox('mvcg', version = 0, flags) {
	unsigned int(32) multiview_group_id;
	unsigned int(16) num_entries;
	unsigned int(8) reserved = 0;
	for(i=0; i<num_entries; i++) {
		unsigned int(8) entry_type;
		if (entry_type == 0)
			unsigned int(32) track_id;
		else if (entry_type == 1) {
			unsigned int(32) track_id;
			unsigned int(16) tier_id;
		}
		else if (entry_type == 2) {
			unsigned int(6) reserved1 = 0;
			unsigned int(10) output_view_id;
		}
		else if (entry_type == 3) {
			unsigned int(6) reserved2 = 0;
			unsigned int(10) start_view_id;
			unsigned int(16) view_count;
		}
	}
	TierInfoBox subset_stream_info; 			// optional
	MultiviewRelationAttributeBox relation_attributes; // optional
	TierBitRateBox subset_stream_bit_rate; // optional
	BufferingBox subset_stream_buffering; 	// optional
	MultiviewSceneInfoBox multiview_scene_info; 			// optional
}
Semantics
multiview_group_id provides a unique identifier for the multiview group within the file.
num_entries is the number of tracks (entry type 0), tiers (entry type 1), target output views (entry type 2), or continuous sets of target output views (entry type 3), included in this multiview group.
entry_type specifies how the target output views are indicated. The following values of entry_type are specified:
0 – all the views included in an indicated track are target output views
1 – the view(s) of an indicated tier within an indicated track are target output views
2 – the view with view_id equal to output_view_id is a target output view
3 – the views having view_id within the range of start_view_id to (start_view_id + view_count – 1), inclusive, are target output views
track_id indicates a track containing target output views.
tier_id indicates a tier within a track where all views within the tier are target output views.
output_view_id indicates a view_id of a target output view.
start_view_id indicates the first view_id in a range of contiguous values of view_id all being target output views.
view_count indicates the number of contiguous values of view_id all being target output views.
track_id indicates a track.
tier_id indicates a tier within a track.
subset_stream_info indicates the characteristics of the bitstream subset containing the indicated output views and the views they depend on.
relation_attributes indicate the relations between output views. If 'ecam' is used as a common attribute, all the output views are associated with extrinsic camera parameters indicating that the cameras have identical rotation and constant spacing. If 'ecam' is used as a differentiating attribute, at least one output view is associated with extrinsic camera parameters with different rotation from the others or the output views are associated with extrinsic camera parameters not having a constant spacing.
subset_stream_bit_rate indicates the bit rate statistics of the bitstream subset containing the indicated output views and the views they depend on. The values of tierBaseBitRate, tierMaxBitRate, and tierAvgBitRate within the TierBitRateBox are unspecified.
subset_stream_buffering indicates the HRD parameters that apply to the bitstream subset containing the indicated output views and the views they depend on and operating with the indicated target output views.
multiview_scene_info contains the maximum disparity in units of integer pixel resolution between any spatially adjacent output views in any access unit.
[bookmark: _Ref201139016]Multiview Group Relation Box
Definition
Box Type:	‘swtc‘
Container:	Multiview Information box (‘mvci’)
Mandatory:	No
Quantity:	Zero or more
This box specifies a set of multiview groups from which one multiview group is decoded and played at any time. The given relation attributes specify which features are common in all associated multiview groups and which factors make the multiview groups differ from each other. The relation attributes can be used to select a suitable set of multiview groups for playback, e.g., based on the number of output views. The differentiating attributes can be used to select which multiview group within the set is suitable for the player, e.g., based on the required level for decoding.
Syntax
aligned(8) class MultiviewGroupRelationBox() extends FullBox(‘swtc’, version = 0, flags) {
	unsigned int(32) num_entries;
	for (i=0; i<num_entries; i++)
		unsigned int(32) multiview_group_id;
	MultiviewRelationAttributeBox relation_attributes;
}
Semantics
num_entries indicates the number of associated multiview groups.
multiview_group_id is the identifier of an associated multiview group.
relation_attributes indicate the relations between the associated multiview groups.
Multiview Relation Attribute Box
Definition
Box Type:	`mvra’
Container:	MultiviewGroupBox or MultiviewGroupRelationBox
Mandatory:	No in MultiviewGroupBox, Yes in MultiviewGroupRelationBox
Quantity:	Zero or One in MultiviewGroupBox
	One in MultiviewGroupRelationBox
When the Multiview Relation Attribute box is contained in a Multiview Group box, it indicates the relation of the output views of the respective multiview group with each other. When the Multiview Relation Attribute box is contained in a Multiview Group Relation box, it indicates the relation of the multiview groups with each other.
The Multiview Relation Attribute box contains common and differentiating attributes. When the Multiview Relation Attribute box is included in a Multiview Group box, a common attribute indicates a characteristic that is common for each one of the target output views of the multiview group and a differentiating attribute indicates a characteristic which differs in at least one of one of the target output views of the multiview group. When Multiview Relation Attribute box is included in a Multiview Group Relation box, a common attribute indicates a characteristic that is common for the indicated multiview groups or for the respective target output views in each one of the indicated multiview groups, whereas a differentiating attribute indicates a characteristic that differs in at least one of the indicated multiview groups or at least one of the respective target output views in the indicated multiview groups.
A common attribute is associated with an additional parameter, which carries the value of the common attribute. The syntax and semantics of the additional parameter depend on the attribute in question.
For example, a file writer can create a Multiview Group for each stereo pair suitable for display from a multiview bitstream. Furthermore, a file writer can create a Multiview Group Relation box listing all the multiview groups for stereo pair output and including a Multiview Relation Attribute box with common attributes number of views (equal to 2) and in-line camera arrangement. A file reader can study the Multiview Group Relation box to find the options for stereo pair output and choose one multiview group for processing. Note that the presence of views in a group does not necessarily imply they are all suggested as output views at any given time – the terminal may choose which views to output, and it is not limited by the group information.
Syntax
aligned(8) class MultiviewRelationAttributeBox
	extends FullBox(‘mvra’, version = 0, flags) {
	unsigned int(16) reserved1 = 0;
	unsigned int(16) num_common_attributes;
	for (i=0; i<num_common_attributes; i++) {
		unsigned int(32) common_attribute;
		bit(32) common_value;
	}
	unsigned int(16) reserved2 = 0;
	unsigned int(16) num_differentiating_attributes;
	for (i=0; i<num_differentiating_attributes; i++)
		unsigned int(32) differentiating_attribute;
}
Semantics
common_attribute and differentiating_attribute are selected from the list below. Attributes that can be used as a differentiating attribute are associated with a distinguishing pointer to the field or information.
common_value specifies the value for the common attribute. Its syntax and semantics depend on the common attribute and are specified in the table below.
	Name
	Attribute
	Pointer and semantics
	common_value syntax and semantics

	Profile
	‘prfl’
	This attribute shall not be included in the Multiview Group box.
When included in the Multiview Group Relation box, the attribute refers to the profile required for decoding the bitstream subset corresponding to the multiview group. The attribute points to the profileIndication field of the subset_stream_info element of the Multiview Group box.
	unsigned int(24) reserved = 0;
unsigned int(8) profileIndication;
profileIndication is the profile sufficient for decoding the bitstream subset corresponding to all indicated multiview groups.

	Level
	‘levl’
	This attribute shall not be included in the Multiview Group box.
When included in the Multiview Group Relation box, the attribute refers to the level required for decoding the bitstream subset corresponding to the multiview group. The attribute points to the levelIndication field of the subset_stream_info element of the Multiview Group box.
	unsigned int(24) reserved = 0;
unsigned int(8) levelIndication;
profileIndication is the level sufficient for decoding the bitstream subset corresponding to all indicated multiview groups, or 0 if the level is unspecified.

	Bitrate
	‘bitr’
	This attribute shall not be included in the Multiview Group box.
When included in the Multiview Group Relation box, the attribute refers to the total size of bitstream subset required for decoding of the multiview group divided by the duration in the track header box. The attribute points to the avgBitRate field of the subset_stream_bit_rate element of the Multiview Group box, if present, or a value that would be contained in the avgBitRate field of the subset_stream_bit_rate element of the Multiview Group box, if it were present.
	unsigned int(32) bitrate;

bitrate indicates the average bit rate in bits per second of the bitstream subset required for decoding the multiview group. The bitrate may be rounded up.

	Frame rate
	‘frar’
	This attribute shall not be included in the Multiview Group box.
When included in the Multiview Group Relation box, the attribute refers the number of samples in the track divided by duration in the track header box.
	unsigned int(16) integer_part;
unsigned int(16) reserved = 0;

integer_part shall be equal to the output rate of decoded access units in second rounded to the closest integer using the Round function specified in ISO/IEC 14496-10.

	Number of output views
	‘nvws’
	Number of target output views indicated in the Multiview Group Box ('mvcg')
If this attribute is included in the Multiview Group box, it shall be a common attribute and merely documents the number of output views in the respective multiview group.
	unsigned int(32) num_views;

num_views indicates the number of views in the multiview group.

	Intrinsic camera parameters
	‘icam’
	The intrinsic camera parameters are stored in 'avc1', 'avc2', 'avc3', 'avc4', 'mvc1',‘mvc2’, 'mvc3', 'mvc4', 'mvd1',‘mvd2’, 'mvd3', or 'mvd4' Sample Entry (in Sample entry box of media track).
If this attribute is included in the Multiview Group box and used as a common attribute, the intrinsic camera parameters of the target output views are identical. If this attribute is included in the Multiview Group box and used as a differentiating attribute, the intrinsic camera parameters of the target output views differ at least partly.
If this attribute is included in the Multiview Group Relation box and used as a common attribute, the number of target output views in all indicated multiview groups shall be the same and the intrinsic camera parameters of the respective target output views in all indicated multiview groups are identical. If this attribute is included in the Multiview Group Relation box and used as a differentiating attribute, the intrinsic camera parameters of the respective target output views differ at least partly.
	Unspecified.

	Extrinsic camera parameters
	‘ecam’
	The extrinsic camera parameters are stored in 'avc1', 'avc2', 'avc3', 'avc4', 'mvc1',‘mvc2’, 'mvc3', 'mvc4', 'mvd1',‘mvd2’, 'mvd3', or 'mvd4' Sample Entry (in Sample entry box of media track).
If this attribute is included in the Multiview Group box and used as a common attribute, the rotation of the cameras for all the target output views is the same and, if the cameras are arranged in linear, elliptical, or rectangular arrangement, the distance of adjacent cameras is the same. If this attribute is included in the Multiview Group box and used as a differentiating attribute, the rotation or the distance of adjacent cameras in linear, elliptical, or rectangular arrangement differs.
If the attribute is included in the Multiview Group Relation box and used as a common attribute, the relative extrinsic camera parameters target output views in all indicated multiview groups are identical. That is, the distance of cameras relative to each other and their rotation matches in the indicated multiview groups. If the attribute is included in the Multiview Group Relation box and used as a differentiating attribute, the relative extrinsic camera parameters of respective target output views differ at least partly.
	Unspecified.

	Inline view array
	‘ilvi’
	If used as a common attribute, the associated cameras are located on a straight line.
When included in a Multiview Group box, the attribute shall be a common attribute.
	unsigned int(28) reserved = 0;
unsigned int(2) horizontal_order;
unsigned int(2) vertical_order;

horizontal_order indicates the horizontal order of the views:
0:	the views are in the same horizontal location
1: 	the views are ordered left-to-right
2: 	the views are ordered right-to-left
3: 	the order of the views is undefined, or left and right are not well-defined.
vertical_order indicates the vertical order of the views:
0: 	the views are in the same vertical location
1:	the views are ordered bottom-to-top
2: 	the views are ordered top-to-bottom
3:	the order of the views is undefined, or top and bottom are not well-defined.

	Rectangular view array
	‘rtvi’
	If used as a common attribute, the associated cameras form a rectangular shape and are regularly spaced along the orthogonal coordinate axes.
When included in a Multiview Group box, the attribute shall be a common attribute.
	unsigned int(16) row_view_count;
unsigned int(16) col_view_count;

row_view_count specifies the number of rows in the rectangular array.
col_view_count specifies the number of columns in the rectangular array.
The views are indicated in raster scan order in the Multiview Group box.

	Planar view array
	‘plvi’
	If used as a common attribute, the associated cameras are located on a plane, but may be irregularly spaced.
When included in a Multiview Group box, the attribute shall be a common attribute.
	Unspecified.

	Elliptical view array
	‘elvi’
	If used as a common attribute, the associated cameras are located on the arc of an ellipse.
When included in a Multiview Group box, the attribute shall be a common attribute.
	unsigned int(28) reserved = 0;
unsigned int(2) horizontal_order;
unsigned int(2) vertical_order;

The semantics are identical to those for the Inline view array.

	Spherical view array
	‘spvi’
	If used as a common attribute, the associated cameras are located on the surface of a sphere.
When included in a Multiview Group box, the attribute shall be a common attribute.
	Unspecified.

	Stereo view array
	‘stvi’
	If used as a common attribute, the associated cameras are a pair of views suitable for stereo viewing.
When included in a Multiview Group box, the attribute shall be a common attribute.
	unsigned int(6) reserved1 = 0;
unsigned int(10) left_view_id;
unsigned int(6) reserved2 = 0;
unsigned int(10) right_view_id;

	Geometry
	‘geom’
	If used as a differentiating attribute, indicates that the views or groups of views belong to different view arrangements (e.g. inline, planar, etc.)
	Unspecified.

Multiview Scene Info Box
Definition
Box Type:	‘vwdi’
Container:	Multiview Group box ('mvcg')
Mandatory:	No
Quantity:	Zero or one
An optional Multiview Scene Info Box includes the maximum disparity between the adjacent views of the respective multiview group. This information can be used for processing the multiview video prior to rendering on a 3D display.
NOTE	A Multiview Scene Information SEI message, as specified in MVC H.12.1.5, can indicate the maximum disparity between any adjacent views in the bitstream. Thus, the Multiview Scene Info Box represents similar information as carried in the Multiview Scene Information SEI message but is limited to a certain set of views rather than concerns all the views in the bitstream.
The Multiview Scene Info Box shall not be present for multiview groups associated with cameras that do not form a one-dimensional arrangement, such as a line or an arc of an ellipse.
Syntax
class MultiviewSceneInfoBox extends Box (‘vwdi’)
{
	unsigned int(8) 	max_disparity;
}
Semantics
max_disparity specifies the maximum disparity in units of integer luma samples between the spatially adjacent view components (within an access unit) in this multiview group. This information can be used for processing the multiview video prior to rendering on a 3D display.
MVC View priority Assignment Box
Definition
Box Type:	‘mvcP’
Container:	Sample Entry (‘avc1’, ‘avc2’, 'avc3', 'avc4',
		‘mvc1’, ‘mvc2’, 'mvc3', 'mvc4',
		‘mvd1’, ‘mvd2’, 'mvd3', 'mvd4')
Mandatory:	No
Quantity:	Zero or one
A priority assignment URI provides the name (in the URI space) of a method used to assign content priority values in the View Priority sample grouping. The URI is treated here as a name only; it should be de-referenceable, though this is not required. File readers may be able to recognize some methods and thereby know what stream extraction or selection of output views based on particular content priority values would do.
Syntax
class MVCViewPriorityAssignmentBox extends Box(‘mvcP’)
{
	unsigned int(8)	method_count;
	string PriorityAssignmentURI[method_count];
}
Semantics
method_count provides a count of the number of following URIs.
PriorityAssignmentURI provides a unique name of the method used to assign content_priority_id values in View Priority sample groupings. In the case of absence of this box, the priority assignment method is unknown.
[bookmark: _Toc316394841][bookmark: _Ref232066548][bookmark: _Toc374356432][bookmark: _Toc232234506][bookmark: _Toc370302980][bookmark: _Toc370303296][bookmark: _Hlt47926702][bookmark: _Toc316394845]HEVC elementary streams and sample definitions
8.1 [bookmark: _Toc374356433][bookmark: _Toc232234507][bookmark: _Toc370302981][bookmark: _Toc370303297]Introduction
The High Efficiency Video Coding (HEVC) standard, jointly developed by the ITU-T and ISO/IEC JTC 1/SC 29/WG 11 (MPEG), offers not only increased coding efficiency and enhanced robustness, but also many features for the systems that use it. To enable the best visibility of, and access to, those features, and to enhance the opportunities for the interchange and interoperability of media, this part of ISO/IEC 14496-15 defines a storage format for video streams compressed using HEVC.
This clause of ISO/IEC 14496-15 specifies the storage format for HEVC (ISO/IEC 23008-2) video streams.
The storage of HEVC content uses the existing capabilities of the ISO base media file format but also defines extensions to support the following features of the HEVC codec.
Parameter sets:
The video, sequence and picture parameter set mechanism decouples the transmission of infrequently changing information from the transmission of coded block data. Each slice containing the coded block data references the picture parameter set containing its decoding parameters. In turn, the picture parameter set references a sequence parameter set that contains sequence level decoding parameter information, and the sequence parameter set references a video parameter set that contains global decoding parameter information (across layers or view in potential scalable and 3DV extensions).
This specification includes the following tools for supporting of HEVC contents:
Temporal scalability sample grouping:
a structuring and grouping mechanism to indicate the association of access units with different hierarchy levels of temporal scalability.
Temporal sub-layer access sample grouping:
a structuring and grouping mechanism to indicate the identification of access units as temporal sub-layer access (TSA) samples.
Step-wise temporal sub-layer access sample grouping:
a structuring and grouping mechanism to indicate the identification of access units as step-wise temporal sub-layer access (STSA) samples.
8.2 [bookmark: _Ref368589164][bookmark: _Toc374356434][bookmark: _Toc232234508][bookmark: _Toc370302982][bookmark: _Toc370303298]Elementary Stream Structure
A video stream is represented by one video track in a file.
Two types of elementary streams are defined for storing HEVC content:
Video Elementary Stream that does not contain any parameter sets; all parameter sets are stored in a sample entry or sample entries;
Video and Parameter set elementary stream that may contain parameter sets, and may also have parameter sets stored in their sample entry or sample entries.
8.3 [bookmark: _Toc316394846][bookmark: _Toc374356435][bookmark: _Toc232234509][bookmark: _Toc370302983][bookmark: _Toc370303299]Sample and configuration definition
8.3.1 Introduction
HEVC sample: An HEVC sample is an access unit as defined in ISO/IEC 23008-2.
8.3.2 [bookmark: _Ref368648739]Canonical order and restrictions
The canonical stream format is an HEVC elementary stream that satisfies the following conditions in addition to the general conditions in <<ed: x-ref>> 4.3.2:
Access unit delimiter NAL units: The constraints obeyed by access unit delimiter NAL units are defined in ISO/IEC 23008-2.
· Parameter sets: A parameter set to be used in a picture must be sent prior to the sample containing that picture or in the sample for that picture. For a video stream that a particular sample entry applies to, the video parameter set, sequence parameter sets, and picture parameter sets, shall be stored only in the sample entry when the sample entry name is 'hvc1', and may be stored in the sample entry and the samples when the sample entry name is 'hev1'.
NOTE	Storing parameter sets in the sample entries of a video stream provides a simple and static way to supply parameter sets. Storing parameters in samples on the other hand is more complex but allows for more dynamism in the case of parameter set updates (a particular parameter set’s content is changed but using the same ID) and in the case of adding additional parameter sets. A decoder initializes with the parameter sets in the sample entry, and then updates using the parameter sets as they occur in the stream, starting from any sample marked as a sync sample. Such updating may replace parameter sets with a new definition using the same identifier. Each time the sample entry changes, the decoder re-initializes with the parameter sets included in the sample entry.
Filler data. Video data is naturally represented as variable bit rate in the file format and should be filled for transmission if needed. Filler Data NAL units and Filler Data SEI messages shall not be present in the file format stored stream when the sample entry does not also permit parameter sets.
NOTE	The removal or addition of Filler Data NAL units, start codes, SEI messages or Filler Data SEI messages may change the bitstream characteristics with respect to conformance with the HRD when operating the HRD in CBR mode as specified in ISO/IEC 23008-2, Annex C.
8.3.3 Decoder configuration information
8.3.3.1 [bookmark: _Ref368649753]HEVC decoder configuration record
8.3.3.1.1 Definition
This subclause specifies the decoder configuration information for ISO/IEC 23008-2 video content.
This record contains the size of the length field used in each sample to indicate the length of its contained NAL units as well as the parameter sets, if stored in the sample entry. This record is externally framed (its size must be supplied by the structure which contains it).
This record contains a version field. This version of the specification defines version 1 of this record. Incompatible changes to the record will be indicated by a change of version number. Readers must not attempt to decode this record or the streams to which it applies if the version number is unrecognised.
Compatible extensions to this record will extend it and will not change the configuration version code. Readers should be prepared to ignore unrecognised data beyond the definition of the data they understand.
The values for general_profile_space, general_tier_flag, general_profile_idc, general_profile_compatibility_flags, general_constraint_indicator_flags, general_level_idc, and min_spatial_segmentation_idc must be valid for all parameter sets that are activated when the stream described by this record is decoded (referred to as "all the parameter sets" in the following sentences in this paragraph). Specifically, the following restrictions apply:
The value of general_profile_space in all the parameter sets must be identical.
The tier indication general_tier_flag must indicate a tier equal to or greater than the highest tier indicated in all the parameter sets.
The profile indication general_profile_idc must indicate a profile to which the stream associated with this configuration record conforms.
NOTE		If the sequence parameter sets are marked with different profiles, then the stream may need examination to determine which profile, if any, the entire stream conforms to. If the entire stream is not examined, or the examination reveals that there is no profile to which the entire stream conforms, then the entire stream must be split into two or more sub-streams with separate configuration records in which these rules can be met.
Each bit in general_profile_compatibility_flags may only be set if all the parameter sets set that bit.
Each bit in general_constraint_indicator_flags may only be set if all the parameter sets set that bit.
The level indication general_level_idc must indicate a level of capability equal to or greater than the highest level indicated for the highest tier in all the parameter sets.
The min_spatial_segmentation_idc indication must indicate a level of spatial segmentation equal to or less than the lowest level of spatial segmentation indicated in all the parameter sets.
Explicit indication can be provided in the HEVC Decoder Configuration Record about the chroma format and bit depth as well as other important format information used by the HEVC video elementary stream. Each type of such information must be identical in all parameter sets, if present, in a single HEVC configuration record. If two sequences differ in any type of such information, two different HEVC configuration records must be used. If the two sequences differ in color space indications in their VUI information, then two different configuration records are also required.
There is a set of arrays to carry initialization NAL units. The NAL unit types are restricted to indicate SPS, PPS, VPS, and SEI NAL units only. NAL unit types that are reserved in ISO/IEC 23008-2 and in this specification may acquire a definition in future, and readers should ignore arrays with reserved or unpermitted values of NAL unit type.
NOTE – this ‘tolerant’ behaviour is designed so that errors are not raised, allowing the possibility of backwards-compatible extensions to these arrays in future specifications.
It is recommended that the arrays be in the order VPS, SPS, PPS, SEI.
When general_non_packed_constraint_flag (bit 3 of the 6-byte general_constraint_indicator_flags) is equal to 0 and some of the samples referring to this sample entry represent frame-packed content and any of the default display windows specified by the active SPSs for the samples referring to this sample entry covers more than one constituent frame of the frame-packed content, the techniques described in 8.15 of ISO/IEC 14496-12 (‘Post-decoder requirements on media’) using the scheme type “stvi” shall be used. In this case, the stereo_scheme in the Stereo Video Box should be set to 1, to indicate that the frame packing scheme used in HEVC is the same as in AVC.
8.3.3.1.2 Syntax
aligned(8) class HEVCDecoderConfigurationRecord {
	unsigned int(8) configurationVersion = 1;
	unsigned int(2) general_profile_space;
	unsigned int(1) general_tier_flag;
	unsigned int(5) general_profile_idc;
	unsigned int(32) general_profile_compatibility_flags;
	unsigned int(48) general_constraint_indicator_flags;
	unsigned int(8) general_level_idc;
	bit(4) reserved = ‘1111’b;
	unsigned int(12) min_spatial_segmentation_idc;
	bit(6) reserved = ‘111111’b;
	unsigned int(2) parallelismType;
	bit(6) reserved = ‘111111’b;
	unsigned int(2) chromaFormat;
	bit(5) reserved = ‘11111’b;
	unsigned int(3) bitDepthLumaMinus8;
	bit(5) reserved = ‘11111’b;
	unsigned int(3) bitDepthChromaMinus8;
	bit(16) avgFrameRate;
	bit(2) constantFrameRate;
	bit(3) numTemporalLayers;
	bit(1) temporalIdNested;
	unsigned int(2) lengthSizeMinusOne;
	unsigned int(8) numOfArrays;
	for (j=0; j < numOfArrays; j++) {
		bit(1) array_completeness;
		unsigned int(1) reserved = 0;
		unsigned int(6) NAL_unit_type;
		unsigned int(16) numNalus;
		for (i=0; i< numNalus; i++) {
			unsigned int(16) nalUnitLength;
			bit(8*nalUnitLength) nalUnit;
		}
	}
}
8.3.3.1.3 Semantics
general_profile_space, general_tier_flag, general_profile_idc, general_profile_compatibility_flags, general_constraint_indicator_flags, general_level_idc, and min_spatial_segmentation_idc contain the matching values for the fields general_profile_space, general_tier_flag, general_profile_idc, general_profile_compatibility_flag[i] for i from 0 to 31, inclusive, the 6 bytes starting with the byte containing the general_progressive_source_flag, general_level_idc, and min_spatial_segmentation_idc as defined in ISO/IEC 23008-2, for the stream to which this configuration record applies.
parallelismType indicates the type of parallelism that is used to meet the restrictions imposed by min_spatial_segmentation_idc when the value of min_spatial_segmentation_idc is greater than 0. Value 1 indicates that the stream to which this configuration record applies supports slice based parallel decoding. Value 2 indicates that the stream to which this configuration record applies supports tile based parallel decoding. Value 3 indicates that the stream to which this configuration record applies supports entropy coding synchronization based parallel decoding. Value 0 indicates that the stream supports mixed types of parallel decoding or that the parallelism type is unknown.
chromaFormat contains the chroma_format indicator as defined by the chroma_format_idc parameter in ISO/IEC 23008-2, for the stream to which this configuration record applies.
bitDepthLumaMinus8 contains the luma bit depth indicator as defined by the bit_depth_luma_minus8 parameter in ISO/IEC 23008-2, for the stream to which this configuration record applies.
bitDepthChromaMinus8 contains the chroma bit depth indicator as defined by the bit_depth_chroma_minus8 in ISO/IEC 23008-2, for the stream to which this configuration record applies.
avgFrameRate gives the average frame rate in units of frames/(256 seconds), for the stream to which this configuration record applies. Value 0 indicates an unspecified average frame rate.
constantFrameRate equal to 1 indicates that the stream to which this configuration record applies is of constant frame rate. Value 2 indicates that the representation of each temporal layer in the stream is of constant frame rate. Value 0 indicates that the stream may or may not be of constant frame rate.
numTemporalLayers greater than 1 indicates that the stream to which this configuration record applies is temporally scalable and the contained number of temporal layers (also referred to as temporal sub-layer or sub-layer in ISO/IEC 23008-2) is equal to numTemporalLayers. Value 1 indicates that the stream is not temporally scalable. Value 0 indicates that it is unknown whether the stream is temporally scalable.
temporalIdNested equal to 1 indicates that all SPSs that are activated when the stream to which this configuration record applies is decoded have sps_temporal_id_nesting_flag as defined in ISO/IEC 23008-2 equal to 1 and temporal sub-layer up-switching to any higher temporal layer can be performed at any sample. Value 0 indicates that at least one of the SPSs that are activated when the stream to which this configuration record applies is decoded has sps_temporal_id_nesting_flag as defined in ISO/IEC 23008-2 equal to 0.
lengthSizeMinusOne plus 1 indicates the length in bytes of the NALUnitLength field in an HEVC video sample in the stream to which this configuration record applies. For example, a size of one byte is indicated with a value of 0. The value of this field shall be one of 0, 1, or 3 corresponding to a length encoded with 1, 2, or 4 bytes, respectively.
numArrays indicates the number of arrays of NAL units of the indicated type(s)
array_completeness when equal to 1 indicates that all NAL units of the given type are in the following array and none are in the stream; when equal to 0 indicates that additional NAL units of the indicated type may be in the stream; the default and permitted values are constrained by the sample entry name;
NAL_unit_type indicates the type of the NAL units in the following array (which must be all of that type); it takes a value as defined in ISO/IEC 23008-2; it is restricted to take one of the values indicating a VPS, SPS, PPS, or SEI NAL unit;
numNalus indicates the number of NAL units of the indicated type included in the configuration record for the stream to which this configuration record applies. The SEI array must only contain SEI messages of a ‘declarative’ nature, that is, those that provide information about the stream as a whole. An example of such an SEI could be a user-data SEI.
nalUnitLength indicates the length in bytes of the NAL unit.
nalUnit contains an SPS, PPS, VPS or declarative SEI NAL unit, as specified in ISO/IEC 23008-2.
8.4 [bookmark: _Toc316394847][bookmark: _Toc374356436][bookmark: _Toc232234510][bookmark: _Toc370302984][bookmark: _Toc370303300]Derivation from ISO base media file format
8.4.1 HEVC video stream definition
8.4.1.1 Sample entry name and format
8.4.1.1.1 Definition
Box Types:	‘hvc1’, 'hev1', ‘hvcC’
Container:	Sample Table Box (‘stbl’)
Mandatory:	An ‘hvc1’ or ‘hev1’ sample entry is mandatory
Quantity:	One or more sample entries may be present
An HEVC visual sample entry shall contain an HEVC Configuration Box, as defined below. This includes an HEVCDecoderConfigurationRecord, as defined in 5.3.3.1.
An optional MPEG4BitRateBox may be present in the HEVC visual sample entry to signal the bit rate information of the HEVC video stream. Extension descriptors that should be inserted into the Elementary Stream Descriptor, when used in MPEG-4, may also be present.
Multiple sample entries may be used, as permitted by the ISO Base Media File Format specification, to indicate sections of video that use different configurations or parameter sets.
When the sample entry name is ‘hvc1’ or 'hev1', the stream to which this sample entry applies shall be a compliant and usable HEVC stream as viewed by an HEVC decoder operating under the configuration (including profile, tier, and level) given in the HEVCConfigurationBox.
When the sample entry name is ‘hvc1’, the default and mandatory value of array_completeness is 1 for arrays of all types of parameter sets, and 0 for all other arrays. When the sample entry name is ‘hev1’, the default value of array_completeness is 0 for all arrays.
8.4.1.1.2 Syntax
class HEVCConfigurationBox extends Box(‘hvcC’) {
	HEVCDecoderConfigurationRecord() HEVCConfig;
}
class HEVCSampleEntry() extends VisualSampleEntry (‘hvc1’ or 'hev1'){
	HEVCConfigurationBox	config;
	MPEG4BitRateBox (); 					// optional
	MPEG4ExtensionDescriptorsBox ();	// optional
	extra_boxes				boxes;				// optional
}
8.4.1.1.3 Semantics
Compressorname in the base class VisualSampleEntry indicates the name of the compressor used with the value "\013HEVC Coding" being recommended (\013 is 11, the length of the string in bytes).
HEVCDecoderConfigurationRecord is defined in 5.3.3.
8.4.2 Parameter sets in sample entry
This subclause applies to a particular type of parameter sets (VPSs, SPSs, or PPSs) when the particular type of parameter sets is included in the sample entry.
Each HEVC sample entry, which contains the HEVC video stream decoder specific information, includes a group of the particular type of parameter sets. This group of parameter sets functions much like a codebook. Each parameter set has an identifier, and each slice references the parameter set it was coded against using the parameter set's identifier.
In the file format each configuration of parameter sets is represented separately. When the value of the applicable array_completeness is 1, a parameter set cannot be updated without causing a different sample entry to be used.
Systems wishing to send parameter set updates will need to compare the two configurations to find the differences in order to send the appropriate parameter set updates.
NOTE 1	It is recommended that when several parameter sets are used and parameter set updating is desired, the parameter sets are included in the samples of the stream.
NOTE 2	Decoders conforming to this specification are required to support both parameter sets stored in the samples as well as parameter sets stored in the sample entries, unless restricted by another specification using this one.
8.4.3 [bookmark: _Toc15466319][bookmark: _Ref47928512][bookmark: _Toc49271126][bookmark: _Toc117242294][bookmark: _Ref117243865]Sync sample
An HEVC sample is considered as a sync sample if the VCL NAL units in the sample indicate that the coded picture contained in the sample is an Instantaneous Decoding Refresh (IDR) picture, a Clean Random Access (CRA) picture, or a Broken Link Access (BLA) picture.
When the sample entry name is 'hev1', the following applies:
· If the sample is a random access point, all parameter sets needed for decoding that sample shall be included either in the sample entry or in the sample itself.
· Otherwise (the sample is not a random access point), all parameter sets needed for decoding the sample shall be included either in the sample entry or in any of the samples since the previous random access point to the sample itself, inclusive.
The use of Alternative Startup Sequences (ISO/IEC 14496-12 section 10.3) sample grouping is recommended with CRA and BLA pictures.
8.4.4 Sync sample sample grouping
8.4.4.1 Introduction
Sync samples in HEVC may be of various types. These sample groups may be used to identify the sync samples of a specific type. If a sample group is given for a specific type of sync sample, then all samples (if any) containing that type of sync sample are marked by the group. If the group is absent (there is no sample to group mapping for that type), it is unknown which samples contain a sync sample of that type.
8.4.4.2 Sync sample sample group entry
8.4.4.2.1 Definition
Group Types:	‘sync’
Container:	Sample Group Description Box (‘sgpd’)
Mandatory:	No
Quantity:	Zero or more
A sync sample sample group entry identifies samples containing a sync sample of a specific type.
8.4.4.2.2 Syntax
class SyncSampleEntry() extends VisualSampleGroupEntry ('sync')
{
		unsigned int(2) reserved = 0;
		unsigned int(6) NAL_unit_type;
}
8.4.4.2.3 Semantics
NAL_unit_type must be a type that identifies a valid sync sample (e.g. IDR).
8.4.5 Temporal scalability sample grouping
8.4.5.1 Introduction
An HEVC video track may contain zero or one instance of a SampleToGroupBox with a grouping_type 'tscl'. This SampleToGroupBox instance represents the assignment of samples in the track to temporal layers (referred to as temporal sub-layers or sub-layers in ISO/IEC 23008-2). An accompanying instance of the SampleGroupDescriptionBox with the same grouping type shall be present, and contain TemporalLayerEntry sample group entries describing the temporal layers.
There may also be a set of Temporal Level sample group definitions (ISO/IEC 14496-12 section 10.5). A sample mapped to a sample group description entry with index A of a Temporal Level sample grouping shall also be considered mapped to the sample group description entry in the temporal scalability sample group (defined here) having temporalLayerId equal to A (i.e. a sample to group mapping for the temporal scalability sample group may also be present but is not required).
8.4.5.2 Temporal layer sample group entry
8.4.5.2.1 Definition
Group Types:	‘tscl’
Container:	Sample Group Description Box (‘sgpd’)
Mandatory:	No
Quantity:	Zero or more
A temporal layer sample group entry defines the temporal layer information for all samples in a temporal layer. Temporal layers are numbered with non-negative integers, and each temporal layer is associated with a particular value of TemporalId as defined in ISO/IEC 23008-2. A temporal layer associated with a TemporalId value greater than 0 depends on all temporal layers associated with lower TemporalId values. A temporal layer representation, also referred to as the representation of a temporal layer, associated with a particular TemporalId value consists of all temporal layers associated with TemporalId values less than or equal to the given TemporalId value.
8.4.5.2.2 Syntax
class TemporalLayerEntry() extends VisualSampleGroupEntry ('tscl')
{
	unsigned int(8) temporalLayerId;
	unsigned int(2) tlprofile_space;
	unsigned int(1) tltier_flag;
	unsigned int(5) tlprofile_idc;
	unsigned int(32) tlprofile_compatibility_flags;
	unsigned int(48) tlconstraint_indicator_flags;
	unsigned int(8) tllevel_idc;
	unsigned int(16) tlMaxBitRate;
	unsigned int(16) tlAvgBitRate;
	unsigned int(8) tlConstantFrameRate;
	unsigned int(16) tlAvgFrameRate;
}
8.4.5.2.3 Semantics
temporalLayerId gives the ID of this temporal layer. For all samples that are members of this sample group, the VCL NAL units shall have temporal_id, as defined in ISO/IEC 23008-2, equal to temporalLayerId.
tlprofile_space, tltier_flag, tlprofile_idc, tlprofile_compatibility_flags, tlconstraint_indicator_flags, and tllevel_idc contain the values of general_profile_space, general_tier_flag, general_profile_idc, general_profile_compatibility_flag[i] for i from 0 to 31, inclusive, the 6 bytes starting with the byte containing the general_progressive_source_flag, and general_level_idc, respectively, for the representation of the temporal layer identified by temporalLayerId.
tlMaxBitrate gives the maximum rate in 1000 bits per second over any window of one second, for the representation of the temporal layer identified by temporalLayerId.
tlAvgBitRate gives the average bit rate in units of 1000 bits per second, for the representation of the temporal layer identified by temporalLayerId.
tlConstantFrameRate equal to 1 indicates that the representation of the temporal layer identified by temporalLayerId is of constant frame rate. Value zero indicates that the representation of the temporal layer identified by temporalLayerId may or may not be of constant frame rate.
tlAvgFrameRate gives the average frame rate in units of frames/(256 seconds), for the representation of the temporal layer identified by temporalLayerId.
8.4.6 [bookmark: _Toc49271131][bookmark: _Toc117242299]Temporal sub-layer access sample grouping
8.4.6.1 Introduction
An HEVC video track may contain zero or one instance of a SampleToGroupBox with a grouping_type 'tsas'. This SampleToGroupBox instance represents the marking of samples as temporal sub-layer access points. An accompanying instance of the SampleGroupDescriptionBox with the same grouping type shall be present.
8.4.6.2 Temporal sub-layer sample group entry
8.4.6.2.1 Introduction
Group Types:	‘tsas’
Container:	Sample Group Description Box (‘sgpd’)
Mandatory:	No
Quantity:	Zero or one
This sample group is used to mark temporal layer access (TSA) samples.
8.4.6.2.2 Syntax
class TemporalSubLayerEntry() extends VisualSampleGroupEntry ('tsas')
{
}
8.4.7 Step-wise temporal layer access sample grouping
8.4.7.1 Introduction
An HEVC video track may contain zero or one instance of a SampleToGroupBox with a grouping_type 'stsa'. This SampleToGroupBox instance represents the marking of samples as step-wise temporal layer access points. An accompanying instance of the SampleGroupDescriptionBox with the same grouping type shall be present.
When temporalIdNested in the applicable sample entry is equal to 1, the quantity of step-wise temporal sub-layer access sample group entry shall be zero.
8.4.7.2 Step-wise temporal layer sample group entry
8.4.7.2.1 Definition
Group Types:	‘stsa’
Container:	Sample Group Description Box (‘sgpd’)
Mandatory:	No
Quantity:	Zero or one
This sample group is used to mark step-wise temporal layer access (STSA) samples.
8.4.7.2.2 Syntax
class StepwiseTemporalLayerEntry() extends VisualSampleGroupEntry ('stsa')
{
}
8.4.8 [bookmark: _Ref368591722]Definition of a sub-sample for HEVC
For the use of the sub-sample information box (8.7.7 of ISO/IEC 14496-12) in an HEVC stream, a sub-sample is defined on the basis of the value of the flags field of the sub-sample information box as specified below. The presence of this box is optional; however, if present in a track containing HEVC data, it shall have the semantics defined here.
flags specifies the type of sub-sample information given in this box as follows:
0:	NAL-unit-based sub-samples. A sub-sample contains one or more contiguous NAL units.
1:	Decoding-unit-based sub-samples. A sub-sample contains exactly one decoding unit.
2:	Tile-based sub-samples. A sub-sample either contains one tile and the associated non-VCL NAL units, if any, of the VCL NAL unit(s) containing the tile, or contains one or more non-VCL NAL units.
3:	CTU-row-based sub-samples. A sub-sample either contains one CTU row within a slice and the associated non-VCL NAL units, if any, of the VCL NAL unit(s) containing the CTU row or contains one or more non-VCL NAL units. This type of sub-sample information shall not be used when entropy_coding_sync_enabled_flag is equal to 0.
4:	Slice-based sub-samples. A sub-sample either contains one slice (where each slice may contain one or more slice segments, each of which is a NAL unit) and the associated non-VCL NAL units, if any, or contains one or more non-VCL NAL units.
Other values of flags are reserved.
The subsample_priority field shall be set to a value in accordance with the specification of this field in ISO/IEC 14496-12.
The discardable field shall be set to 1 only if this sample can still be decoded if this sub-sample is discarded (e.g. the sub-sample consists of an SEI NAL unit).
When the first byte of a NAL unit is included in a sub-sample, the preceding length field must also be included in the same sub-sample.
		if (flags == 0) {
			unsigned int(1) SubLayerRefNalUnitFlag;
			unsigned int(1) RapNalUnitFlag;
			unsigned int(1) VclNalUnitFlag;
			unsigned int(29) reserved = 0;
		} else if (flags == 1)
			unsigned int(32) reserved = 0;
		else if (flags == 2) {
			unsigned int(2) vcl_idc;
			unsigned int(2) reserved = 0;
			unsigned int(4) log2_min_luma_ctb;
			unsigned int(12) ctb_x;
			unsigned int(12) ctb_y;
		} else if (flags == 3 || flags == 4) {
			unsigned int(2) vcl_idc;
			unsigned int(30) reserved = 0;
		}
SubLayerRefNalUnitFlag equal to 0 indicates that all NAL units in the sub-sample are VCL NAL units of a sub-layer non-reference picture as specified in ISO/IEC 23008-2. Value 1 indicates that all NAL units in the sub-sample are VCL NAL units of a sub-layer reference picture as specified in ISO/IEC 23008-2.
RapNalUnitFlag equal to 0 indicates that none of the NAL units in the sub-sample has nal_unit_type equal to IDR_W_RADL, IDR_N_LP, CRA_NUT, BLA_W_LP, BLA_W_RADL, BLA_N_LP, RSV_IRAP_VCL22, or RSV_IRAP_VCL23 as specified in ISO/IEC 23008-2. Value 1 indicates that all NAL units in the sub-sample have nal_unit_type equal to IDR_W_RADL, IDR_N_LP, CRA_NUT, BLA_W_LP, BLA_W_RADL, BLA_N_LP, RSV_IRAP_VCL22, or RSV_IRAP_VCL23 as specified in ISO/IEC 23008-2.
VclNalUnitFlag equal to 0 indicates that all NAL units in the sub-sample are non-VCL NAL units. Value 1 indicates that all NAL units in the sub-sample are VCL NAL units.
vcl_idc indicates whether the sub-sample contains Video Coding Layer (VCL) data, non-VCL data, or both, as follows:
0: the sub-sample contains VCL data and does not contain non-VCL data
1: the sub-sample contains no VCL data and contains non-VCL data
2: the sub-sample may contain both VCL and non-VCL data, which shall be associated with each other. For example, a sub-sample may contain a decoding unit information SEI message followed by the set of NAL units associated with the SEI message.
3: reserved
log2_min_luma_ctb indicates the unit of ctb_x and ctb_y, specified as follows:
0: 8 luma samples
1: 16 luma samples
2: 32 luma samples
3: 64 luma samples
ctb_x specifies the 0-based coordinate of the right-most luma samples of the tile associated with the sub-sample when flags is equal to 2 and vcl_idc is equal to 1 or 2, in units derived from log2_min_luma_ctb as specified above.
ctb_y specifies the 0-based coordinate the bottom-most luma samples of the tile associated with the sub-sample when flags is equal to 2 and vcl_idc is equal to 1 or 2, in units derived from log2_min_luma_ctb as specified above.
8.4.9 [bookmark: _Ref370258325]Handling non-output samples
HEVC allows for file format samples that are used only for reference and not output (e.g. a non-displayed reference picture in video). When any such non-output sample is present in a track, the file shall be constrained as follows:
1) A non-output sample shall be given a composition time which is outside the time-range of the samples that are output;
2) An edit list shall be used to exclude the composition times of the non-output samples.
3) When the track includes a CompositionOffsetBox (‘ctts’),
a. version 1 of the CompositionOffsetBox shall be used,
b. the value of sample_offset shall be set equal to -231 for each non-output sample,
c. the CompositionToDecodeBox (‘cslg’) should be contained in the SampleTableBox (‘stbl’) of the track, and
d. when the CompositionToDecodeBox is present for the track, the value of leastDecodeToDisplayDelta field in the box shall be equal to the smallest composition offset in the CompositionOffsetBox excluding the sample_offset values for non-output samples.
NOTE: Thus, leastDecodeToDisplayDelta is greater than -231.
Annex A [bookmark: _Toc374356443][bookmark: _Ref201137311][bookmark: _Ref201137935][bookmark: _Toc374356664][bookmark: _Toc232234511][bookmark: _Toc370302985][bookmark: _Toc370303301] (normative)

In-stream structures
A.1 [bookmark: _Toc118693418][bookmark: _Toc117242321][bookmark: _Toc370302986]Introduction
Aggregators and Extractors are file format internal structures enabling efficient grouping of NAL units or extraction of NAL units from other tracks.
Aggregators and Extractors use the NAL unit syntax. These structures are seen as NAL units in the context of the sample structure. While accessing a sample, Aggregators must be removed (leaving their contained or referenced NAL units) and Extractors must be replaced by the data they reference. Aggregators and Extractors must not be present in a stream outside the file format.
These structures use NAL unit types reserved for the application/transport layer by ISO/IEC 14496-10.
NOTE	The following is from ISO/IEC 14496-10:
“NOTE – NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of nal_unit_type is specified in this Recommendation | International Standard.”
A.2 [bookmark: _Toc118693419][bookmark: _Ref151536776][bookmark: _Toc117242322][bookmark: _Ref117244296][bookmark: _Ref201137866][bookmark: _Toc370302987]Aggregators
A.2.1 [bookmark: _Toc117242323]Definition
This subclause describes Aggregators, which enable NALU-map-group entries to be consistent and repetitive. (See Annex B).
Aggregators are used to group NAL units belonging to the same sample.
For storage of ISO/IEC 14496-10 video, the following rules apply:
· Aggregators use the same NAL unit header as SVC VCL NAL units, MVC VCL NAL units, or depth VCL NAL units, but with a different value of NAL unit type.
· When the svc_extension_flag of the NAL unit syntax (specified in 7.3.1 of ISO/IEC 14496-10) of an aggregator is equal to 1, the NAL unit header of SVC VCL NAL units is used for the aggregator. Otherwise, the NAL unit header of MVC and depth VCL NAL units is used for the aggregator.
Aggregators can both aggregate, by inclusion, NAL units within them (within the size indicated by their length) and also aggregate, by reference, NAL units that follow them (within the area indicated by the additional_bytes field within them). When the stream is scanned by an AVC file reader, only the included NAL units are seen as “within” the aggregator. This permits an AVC file reader to skip a whole set of un-needed NAL units when they are aggregated by inclusion. This also permits an AVC reader not to skip needed NAL units but let them remain in-stream when they are aggregated by reference.
Aggregators can be used to group base layer or base view NAL units. If these Aggregators are used in an ‘avc1’ track then an aggregator shall not use inclusion but reference of base layer or base view NAL units (the length of the Aggregator includes only its header and the NAL units referenced by the Aggregator are specified by additional_bytes).
When the aggregator is referenced by either an extractor with data_length equal to zero, or by a Map sample group, the aggregator is treated as aggregating both the included and referenced bytes.
An Aggregator may include or reference Extractors. An Extractor may extract from Aggregators. An aggregator must not include or reference another aggregator directly; however, an aggregator may include or reference an extractor which references an aggregator.
When scanning the stream:
a) if the aggregator is unrecognized (e.g. by an AVC reader or decoder) it is easily discarded with its included content;
b) if the aggregator is not needed (i.e. it belongs to an undesired layer) it and its contents both by inclusion and reference are easily discarded (using its length and additional_bytes fields);
c) if the aggregator is needed, its header is easily discarded and its contents retained.
An aggregator is stored within a sample like any other NAL unit.
All NAL units remain in decoding order within an aggregator.
A.2.2 [bookmark: _Toc117242324]Syntax
class aligned(8) Aggregator (AggregatorSize) {
	NALUnitHeader();
	unsigned int i = sizeof(NALUnitHeader());
 	unsigned int((lengthSizeMinusOne+1)*8)
		additional_bytes;
	i += lengthSizeMinusOne+1;
	while (i<AggregatorSize) {
		unsigned int((lengthSizeMinusOne+1)*8)
					NALUnitLength;
		unsigned int(NALUnitLength*8) NALUnit;
		i += NALUnitLength+lengthSizeMinusOne+1;
	};
}
A.2.3 [bookmark: _Toc117242325]Semantics
The value of the variable AggregatorSize is equal to the size of the aggregator NAL unit, and the function sizeof(X) returns the size of the field X in bytes.
NALUnitHeader(): the first four bytes of SVC, MVC, or depth VCL NAL units.
nal_unit_type shall be set to the aggregator NAL unit type (type 30 for ISO/IEC 14496-10 video).
For an aggregator including or referencing SVC NAL units, the following shall apply.
forbidden_zero_bit and reserved_three_2bits shall be set as specified in ISO/IEC 14496-10.
Other fields (nal_ref_idc, idr_flag, priority_id, no_inter_layer_pred_flag, dependency_id, quality_id, temporal_id, use_ref_base_pic_flag, discardable_flag, and output_flag) shall be set as specified in A.4.
For an aggregator including or referencing MVC or depth NAL units, the following shall apply.
forbidden_zero_bit and reserved_one_bit shall be set as specified in ISO/IEC 14496-10.
Other fields (nal_ref_idc, non_idr_flag, priority_id, view_id, temporal_id, anchor_pic_flag, and inter_view_flag) shall be set as specified in A.5.
additional_bytes: The number of bytes following this aggregator NAL unit that should be considered as aggregated when this aggregator is referenced by an extractor with data_length equal to zero or Map sample group.
NALUnitLength: Specifies the size, in bytes, of the NAL unit following. The size of this field is specified with the lengthSizeMinusOne field.
NALUnit: a NAL unit as specified in ISO/IEC 14496-10, including the NAL unit header. The size of the NAL unit is specified by NALUnitLength.
A.3 [bookmark: _Ref529345250][bookmark: _Toc118693420][bookmark: _Toc117242326][bookmark: _Toc370302988]Extractors
A.3.1 [bookmark: _Toc117242327]Definition
This subclause describes Extractors, which enable compact formation of tracks that extract, by reference, NAL unit data from other tracks.
An Aggregator may include or reference Extractors. An Extractor may reference Aggregators. When an extractor is processed by a file reader that requires it, the extractor is logically replaced by the bytes it references.
For SVC, MVC, or depth VCL tracks, those bytes must not contain extractors; an extractor must not reference, directly or indirectly, another extractor.
NOTE	The track that is referenced may contain extractors even though the data that is referenced by the extractor must not.
An extractor contains an instruction to extract data from another track, which is linked to the track in which the extractor resides, by means of a track reference of type 'scal'.
The bytes copied shall be one of the following:
a) One entire NAL unit; note that when an Aggregator is referenced, both the included and referenced bytes are copied
b) More than one entire NAL unit
In both cases the bytes extracted start with a valid length field and a NAL unit header.
The bytes are copied only from the single identified sample in the track referenced through the indicated ‘scal’ track reference. The alignment is on decoding time, i.e. using the time-to-sample table only, followed by a counted offset in sample number. Extractors are a media-level concept and hence apply to the destination track before any edit list is considered. (However, one would normally expect that the edit lists in the two tracks would be identical).
A.3.2 [bookmark: _Toc117242328]Syntax
class aligned(8) Extractor () {
	NALUnitHeader();
	unsigned int(8) track_ref_index;
	signed int(8) sample_offset;
	unsigned int((lengthSizeMinusOne+1)*8)
		data_offset;
	unsigned int((lengthSizeMinusOne+1)*8)
		data_length;
}
A.3.3 [bookmark: _Toc117242329]Semantics
NALUnitHeader(): the first four bytes of SVC, MVC and depth VCL NAL units.
nal_unit_type shall be set to the extractor NAL unit type (type 31 for ISO/IEC 14496-10 video).
For an extractor referencing SVC NAL units, the following shall apply.
forbidden_zero_bit and reserved_three_2bits shall be set as specified in ISO/IEC 14496-10.
Other fields (nal_ref_idc, idr_flag, priority_id, no_inter_layer_pred_flag, dependency_id, quality_id, temporal_id, use_ref_base_pic_flag, discardable_flag, and output_flag) shall be set as specified in A.4.
For an extractor referencing MVC or depth NAL units, the following shall apply.
forbidden_zero_bit and reserved_one_bit shall be set as specified in ISO/IEC 14496-10.
Other fields (nal_ref_idc, non_idr_flag, priority_id, view_id, temporal_id, anchor_pic_flag, and inter_view_flag) shall be set as specified in A.5.
track_ref_index specifies the index of the track reference of type ‘scal’ to use to find the track from which to extract data. The sample in that track from which data is extracted is temporally aligned or nearest preceding in the media decoding timeline, i.e. using the time-to-sample table only, adjusted by an offset specified by sample_offset with the sample containing the Extractor. The first track reference has the index value 1; the value 0 is reserved.
sample_offset gives the relative index of the sample in the linked track that shall be used as the source of information. Sample 0 (zero) is the sample with the same, or the closest preceding, decoding time compared to the decoding time of the sample containing the extractor; sample 1 (one) is the next sample, sample -1 (minus 1) is the previous sample, and so on.
data_offset: The offset of the first byte within the reference sample to copy. If the extraction starts with the first byte of data in that sample, the offset takes the value 0. The offset shall reference the beginning of a NAL unit length field.
data_length: The number of bytes to copy. If this field takes the value 0, then the entire single referenced NAL unit is copied (i.e. the length to copy is taken from the length field referenced by the data offset, augmented by the additional_bytes field in the case of Aggregators).
NOTE	If the two tracks use different lengthSizeMinusOne values, then the extracted data will need re-formatting to conform to the destination track’s length field size.
A.4 [bookmark: _Ref166392404][bookmark: _Toc117242330][bookmark: _Toc370302989]NAL unit header values for SVC
Both extractors and aggregators use the NAL unit header SVC extension. The NAL units extracted by an extractor or aggregated by an aggregator are all those NAL units that are referenced or included by recursively inspecting the contents of aggregator or extractor NAL units.
The fields nal_ref_idc, idr_flag, priority_id, temporal_id, dependency_id, quality_id, discardable_flag, output_flag, use_ref_base_pic_flag, and no_inter_layer_pred_flag shall take the following values:
nal_ref_idc shall be set to the highest value of the field in all the extracted or aggregated NAL units.
idr_flag shall be set to the highest value of the field in all the extracted or aggregated NAL units.
priority_id, temporal_id, dependency_id, and quality_id shall be set to the lowest values of the fields, respectively, in all the extracted or aggregated NAL units.
discardable_flag shall be set to 1 if and only if all the extracted or aggregated NAL units have the discardable_flag set to 1, and set to 0 otherwise.
output_flag should be set to 1 if at least one of the aggregated or extracted NAL units has this flag set to 1, and otherwise set to 0.
use_ref_base_pic_flag shall be set to 1 if and only if at least one of the extracted or aggregated VCL NAL units have the use_ref_base_pic_flag set to 1, and set to 0 otherwise.
no_inter_layer_pred_flag shall be set to 1 if and only if all the extracted or aggregated VCL NAL units have the no_inter_layer_pred_flag set to 1, and set to 0 otherwise.
If the set of extracted or aggregated NAL units is empty, then each of these fields takes a value conformant with the mapped tier description.
NOTE	Aggregators could group NAL units with different scalability information.
NOTE	Aggregators could be used to group NAL units belonging to a level of scalability which may not be signalled by the NAL unit header (e.g. NAL units belonging to a region of interest). The description of such Aggregators may be done with the tier description and the NAL unit map groups. In this case more than one Aggregator with the same scalability information may occur in one sample.
NOTE	If multiple scalable tracks reference the same media data, then an aggregator should group NAL units with identical scalability information only. This ensures that the resulting pattern can be accessed by each of the tracks.
NOTE	If no NAL unit of a particular layer exists in an access unit then an empty Aggregator (in which the length of the Aggregator includes only the header, and additional_bytes is zero) may exist.
A.5 [bookmark: _Ref117239583][bookmark: _Toc117242331][bookmark: _Toc370302990]NAL unit header values for MVC and MVD
Both Aggregators and Extractors use the NAL unit header MVC extension. The NAL units extracted by an extractor or aggregated by an aggregator are all those NAL units that are referenced or included by recursively inspecting the contents of aggregator or extractor NAL units.
The fields nal_ref_idc, non_idr_flag, priority_id, view_id, temporal_id, anchor_pic_flag, and inter_view_flag shall take the following values:
nal_ref_idc shall be set to the highest value of the field in all the aggregated or extracted NAL units.
non_idr_flag shall be set to the lowest value of the field in all the aggregated or extracted NAL units.
priority_id and temporal_id shall be set to the lowest values of the fields, respectively, in all the aggregated or extracted NAL units.
view_id shall be set to the view_id value of the VCL NAL unit with the lowest view order index among all the aggregated or extracted VCL NAL units.
anchor_pic_flag and inter_view_flag shall be set to the highest value of the fields, respectively, in all the aggregated or extracted VCL NAL units.
If the set of extracted or aggregated NAL units is empty, then each of these fields takes a value conformant with the mapped tier description. [Ed. (YK): Check whether this is surely existing and correct for MVC.]
Annex B [bookmark: _Toc374356665][bookmark: _Ref61342130][bookmark: _Toc117242332][bookmark: _Toc374356666][bookmark: _Toc232234512][bookmark: _Toc370302991][bookmark: _Toc370303302]
(normative)

SVC, MVC, and MVD sample group and sub-track definitions
B.1 [bookmark: _Ref117240572][bookmark: _Ref117240579][bookmark: _Toc117242333][bookmark: _Toc370302992][bookmark: _Toc109627204][bookmark: _Toc118693423]Introduction
The following sample groups may be used in an SVC, MVC, or MVD track to document the structure of the SVC, MVC, or MVD stream and to ease obtaining information of subsets of the stream and extraction of any of the subsets.
If views from the same MVC or MVD bitstream are stored in multiple MVC or MVD tracks and one or more of these tracks contain multiple views, sample group entries and map groups can be used for these tracks containing multiple views.
There are a number of boxes, defined below, which may occur in the sample group description, namely the Scalable Group Entry for an SVC stream or the Multiview Group Entry for an MVC or MVD stream.
Each Scalable Group Entry or Multiview Group Entry documents a subset of the SVC stream or the MVC or MVD stream, respectively. Each of the subsets is associated with a tier and may contain one or more operating points. A grouping type of ‘scif’ or ‘mvif’ is used to define Scalable Group Entries or Multiview Group Entries, respectively.
For each tier, there may be more than one Scalable Group Entry or Multiview Group Entry in the SampleGroupDescriptionBox of grouping type ‘scif’ or ‘mvif’, respectively. Only one of those entries is the primary definition of the tier.
Though the Scalable and Multiview Group Entries are contained in the SampleGroupDescription box, the grouping is not a true sample grouping as each sample may be associated with more than one tier, as these groups are used to describe sections of the samples – the NAL units. As a result, it is possible that there may not be a SampleToGroup box of the grouping type 'scif' or ‘mvif’, unless it happens that a group does, in fact, describe a whole sample. Even if a SampleToGroup box of the grouping type 'scif' or ‘mvif’ is present, the information is not needed for extraction of NAL units of tiers; instead, the map groups must always document the ‘pattern’ of NAL units within the samples and provide the NAL-unit-to-tier mapping information that may be needed for extraction of NAL units.
A multiview group specifies an MVC or MVD operating point and is therefore associated with the target output views of the MVC or MVD operating point. The Multiview Group box (7.7.3), is used to specify a multiview group. Many of the boxes used to characterize SVC, MVC, and MVD tiers are also used to characterize MVC or MVD operating points and can therefore be contained in the Multiview Group box too.
B.2 [bookmark: _Ref117240584][bookmark: _Toc117242334][bookmark: _Toc370302993]Definition
B.2.1 [bookmark: _Toc117242335]Tier information box
B.2.1.1 Definition
Box Type: 	‘tiri’
Container: 	ScalableGroupEntry or MultiviewGroupEntry or MultiviewGroupBox
Mandatory: 	Yes
Quantity:	Zero or One // depends on primary_definition
The tier information box provides information about the profile, level, frame size, discardability, and frame-rate of a covered bitstream subset. If the Tier Information box is included in a Scalable Group entry or a Multiview Group entry, the covered bitstream subset consists of the tier and tiers it depends upon. If the Tier Information box is included in a Multiview Group box, the covered bitstream subset consists of the target output views of the multiview group and all the views required for decoding the target output views.
B.2.1.2 Syntax
class TierInfoBox extends Box(‘tiri’){ //Mandatory Box
	unsigned int(16) tierID;
	unsigned int(8) profileIndication;
	unsigned int(8) profile_compatibility;
	unsigned int(8) levelIndication;
	unsigned int(8) reserved = 0;

	unsigned int(16) visualWidth;
	unsigned int(16) visualHeight;

	unsigned int(2) discardable;
	unsigned int(2) constantFrameRate;
	unsigned int(4) reserved = 0;
	unsigned int(16) frameRate;
}
B.2.1.3 Semantics
tierID gives the identifier of the tier, when the Tier Information box is included a Scalable Group entry or a Multiview Group entry. Otherwise, the semantics of tierID are unspecified, and in this case, tierID must be set to the reserved value 0.
profileIndication contains the profile_idc as defined in ISO/IEC 14496-10, when the parameter applies to the covered bitstream subset.
profile_compatibility is a byte defined exactly the same as the byte which occurs between the profile_idc and level_idc in a sequence parameter set or a subset sequence parameter set, as defined in ISO/IEC 14496-10 Annex G, Annex H, or Annex I, when the parameters apply to the covered bitstream subset.
levelIndication contains the level_idc as defined in ISO/IEC 14496-10, when the parameter applies to the covered bitstream subset. If the Tier Information Box is included in a Multiview Group Entry, levelIndication shall be valid when all the views of the covered bitstream subset are target output views. If the Tier Information Box is included in a Multiview Group Box, levelIndication shall be valid when the views specified by the respective multiview group are the target output views. If levelIndication is equal to 0 for an MVC or MVD stream, the level that applies to the covered bitstream subset and operating with all the views being target output views is unspecified.
The profile, profile compatibility flags and level indicated by the fields profileIndication, profile_compatibility, and levelIndication specifies an interoperability point with which the covered bitstream subset, and, for MVC or MVD, operating with the target output views as specified in the semantics of levelIndication, is compatible.
visualWidth gives the value of the width of the coded picture (of an SVC stream), coded sub-picture (of an SVC stream), or coded view component (of an MVC or MVD stream) in luma pixels of the representation of this tier in the stream or any view component of the covered bitstream subset. A coded sub-picture consists of a proper subset of coded slices of a coded picture. A tier may consist of only sub-pictures. In this case, the tier is referred to as a sub-picture tier. A sub-picture tier may represent a region-of-interest part of the region represented by the entire stream.
NOTE	 The tier representation of a sub-picture tier might not be a valid stream. One example is as follows. An AVC bitstream is encoded using two slice groups. The first slice group includes the macroblocks representing a region-of-interest and is coded without referring to slices in the other slice group for inter prediction over all the access units. The slices of the first slice group in each access unit then form a sub-picture and a sub-picture tier can be specified to include all the sub-pictures over all the access units.
visualHeight gives the value of the height of the coded picture (of an SVC stream), coded sub-picture (of an SVC stream), or coded view component (of an MVC or MVD stream) in luma pixels of the representation of this tier in the stream or any view component of the covered bitstream subset.
discardable takes one of the following values; the value 02 is reserved.
00 	this tier does not contain NAL units with discardable_flag (for SVC) equal to 1 or inter_view_flag (for MVC or MVD) equal to 0.
01	this tier contains both NAL units with discardable_flag (for SVC) equal to 1 or inter_view_flag (for MVC or MVD) equal to 0 and discardable_flag (for SVC) equal to 0 or inter_view_flag (for MVC or MVD) equal to 1.
03	all NAL units in this tier are with discardable_flag (for SVC) equal to 1 or inter_view_flag (for MVC or MVD) equal to 0.
constantFrameRate specifies if the frame rate of this tier is constant. A value of 0 denotes a non-constant frame rate, a value of 1 denotes a constant frame rate and a value of 2 denotes that it is not clear whether the frame rate is constant. A value of 3 is reserved.
frameRate gives the frame rate when the bitstream corresponding to this tier and all the lower tiers that this tier depends on is decoded in frames per second rounded to the closest integer using the Round function specified in ISO/IEC 14496-10. If constantFrameRate has a value of 0 or 2 then frameRate gives the average frame rate. If constantFrameRate has a value of 1 then frameRate gives the constant frame rate. frameRate equal to 0 indicates an unspecified frame rate. For SVC streams, decoded frames, complementary field pairs and non-paired fields are regarded as frames when deriving the value of frameRate. For MVC or MVD streams, decoded view components of any single view only are regarded as frames when deriving the value of frameRate, regardless of the total number of the views, since all output views are required to have simultaneous view components.
B.2.2 [bookmark: _Toc117242336]Tier bit rate box
B.2.2.1 Definition
Box Type: 	‘tibr’
Container: 	ScalableGroupEntry or MultiviewGroupEntry or MultiviewGroupBox
Mandatory: 	No
Quantity:	Zero or One
When included in a Scalable Group entry or a Multiview Group entry, the tier bit rate box provides information about the bit rate values of a tier. Two sets of information are provided: for the tier representation, including all the tiers on which the current tier depends, and for the tier alone. Similarly, for each set of information, the following values are supplied:
· For SVC streams, the lowest long-term average bit rate that this tier could deliver. Let maxDid be the greatest dependency_id for all NAL units of the tier, and minQid be the least quality_id for all the NAL units of the tier and having dependency_id equal to maxDid. The following NAL units of this tier are not considered in calculating this bit rate value: those having dependency_id equal to maxDid and quality_id greater than minQid. For MVC streams, the lowest long-term average bit rate that this tier could deliver is equal to the long-term average bit rate of the tier, when all NAL units of the tier are considered.
· The long-term average bit rate of the tier; all NAL units of the tier are considered.
· The maximum, or peak, bit rate of the tier; all NAL units of the tier are considered.
When included in a Multiview Group box, the tier bit rate box provides information about the bit rate values of the covered bitstream subset consisting of the target output views indicated by the multiview group and all the views required for decoding of the target output views. The maximum and long-term average bit rate for the covered bitstream subset are provided.
B.2.2.2 Syntax
class TierBitRateBox extends Box(‘tibr’){
	unsigned int(32) baseBitRate;
	unsigned int(32) maxBitRate;
	unsigned int(32) avgBitRate;

	unsigned int(32) tierBaseBitRate;
	unsigned int(32) tierMaxBitRate;
	unsigned int(32) tierAvgBitRate;
}
B.2.2.3 Semantics
baseBitRate gives the lowest long-term average bit rate in bits/second of the stream made from this tier and the lower tiers this tier depends on over the entire stream.
For SVC streams, baseBitRate is derived as follows. Let maxDid be the greatest dependency_id for all NAL units of the tier, and minQid be the least quality_id for all NAL units of the tier and having dependency_id equal to maxDid. The NAL units that are taken into account when calculating this bit rate value are as follows: 1) all NAL units of the tier except for those having dependency_id equal to maxDid and quality_id greater than minQid; 2) all NAL units of the lower tiers the current tier depends on.
For MVC or MVD streams, baseBitRate shall be equal to avgBitRate.
maxBitRate gives the maximum bit rate in bits/second of the stream containing all NAL unit mapped to this tier and the lower tiers this tier depends on, over any window of one second. All NAL units in this tier and the lower tiers this tier depends on are taken into account.
avgBitRate gives the long-term average bit rate in bits/second of the stream containing all NAL unit mapped to this tier and the lower tiers this tier depends on, averaged over the entire stream. All NAL units in this tier and the lower tiers this tier depends on are taken into account.
tierBaseBitRate gives the lowest long-term average bit rate in bits/second of the stream made from only this tier over the entire stream. For SVC streams, the set of NAL units that are taken into account when calculating this bit rate value is the same as for baseBitRate but excluding all NAL units of the lower tiers this tier depends on. For MVC or MVD streams, tierBaseBitRate shall be equal to tierAvgBitRate.
tierMaxBitRate gives the maximum bit rate in bits/second that is provided by only this tier over any window of one second. All NAL units mapped to this tier are taken into account. All NAL units of the lower tiers this tier depends on are not considered.
tierAvgBitRate - gives the long-term average bit rate in bits/second that is provided by only this tier, averaged over the entire stream. All NAL units mapped to this tier are taken into account. All NAL units of the lower tiers this tier depends on are not considered.
B.2.3 [bookmark: _Toc117242337]Priority range
B.2.3.1 Definition
Box Type: 	‘svpr’
Container: 	ScalableGroupEntry or MultiviewGroupEntry
Mandatory: 	Yes
Quantity:	Exactly One
NOTE – this box was previously called SVCPriorityRangeBox.
This box reports the minimum and maximum priority_id of the NAL units mapped to this tier.
B.2.3.2 Syntax
class PriorityRangeBox extends Box(‘svpr’) {
	unsigned int(2) reserved1 = 0;		
	unsigned int(6) min_priorityId;
	unsigned int(2) reserved2 = 0;		
	unsigned int(6) max_priorityId;
}
B.2.3.3 [bookmark: _Ref166392217]Semantics
[bookmark: _Toc117242338]min_priority_id, min_priority_id take the minimum or maximum value of the priority_id syntax element that is present in the NAL unit header extension of the SVC, MVC, or depth NAL units mapped to the tier. For AVC streams this takes the value that is, or would be, in the prefix NAL unit.
B.2.4 SVC dependency range
B.2.4.1 Definition
Box Types: 	‘svdr’
Container: 	ScalableGroupEntry
Mandatory: 	Yes
Quantity:	Exactly One
This box reports the minimum and maximum dependency_id of the NAL units mapped to this tier.
The field min_temporal_id reports the minimum value of temporal_id of the NAL units in the tier having dependency_id equal to min_dependency_id, Similarly the field min_quality_id reports the minimum quality_id of those NAL units. The fields max_temporal_id and max_quality_id similarly report on the maximum values of the respective fields in those NAL units having dependency_id equal to max_dependency_id.
B.2.4.2 Syntax
class SVCDependencyRangeBox extends Box(‘svop’) {
	unsigned int(3) min_dependency_id;
	unsigned int(3) min_temporal_id;
	unsigned int(6) reserved = 0;
	unsigned int(4) min_quality_id;
	unsigned int(3) max_dependency_id;
	unsigned int(3) max_temporal_id;
	unsigned int(6) reserved = 0;
	unsigned int(4) max_quality_id;
}
B.2.4.3 Semantics
min_dependency_id, max_dependency_id take the minimum or maximum value of the dependency_id syntax element that is present in the scalable extension NAL unit header defined in the SVC video specification of the NAL units mapped to the tier. For AVC streams this takes the value that is, or would be, in the prefix NAL unit (note: this value is zero).
min_temporal_id, max_temporal_id take the minimum or value of the temporal_id syntax element that is present in the scalable extension NAL unit header defined in the SVC video specification of the NAL units mapped to the tier having dependency_id equal to min_dependency_id and max_dependency_id respectively . For AVC streams this takes the value that is, or would be, in the prefix NAL unit.
[bookmark: _Toc117242339]min_quality_id, max_quality_id take the minimum or value of the quality_id syntax element that is present in the scalable extension NAL unit header defined in the SVC video specification of the NAL units mapped to the tier having dependency_id equal to min_dependency_id and max_dependency_id respectively . For AVC streams this takes the value that is, or would be, in the prefix NAL unit.
B.2.5 Initial parameter sets box
B.2.5.1 Definition
Box Type: 	‘svip’
Container: 	ScalableGroupEntry or MultiviewGroupEntry
Mandatory: 	No
Quantity:	Zero or One
The initial parameter sets box documents which parameter sets are needed for decoding this tier and all the lower tiers it depends on.
B.2.5.2 Syntax
class InitialParameterSetBox extends Box (‘svip’) {
	unsigned int(8) sps_id_count;
	for (i=0; i< sps_id_count; i++)
		unsigned int(8) SPS_index;
	unsigned int(8) pps_id_count;
	for (i=0; i< pps_id_count; i++)
		unsigned int(8) PPS_index;
}
B.2.5.3 Semantics
sps_id_count, pps_id_count gives the number of entries in the following tables.
SPS_index specifies that the SPS or subset SPS with this index is needed for decoding this tier and all the lower tiers it depends on. These are 1-based indices into the arrays in SVCDecoderConfigurationRecord, MVCDecoderConfigurationRecord, or MVDDecoderConfigurationRecord.
PPS_index specifies that the PPS with this index is needed for decoding this tier and all the lower tiers it depends on. These are 1-based indices into the arrays in SVCDecoderConfigurationRecord, MVCDecoderConfigurationRecord, or MVDDecoderConfigurationRecord.
B.2.6 [bookmark: _Toc117242340]SVC rect region box
B.2.6.1 Definition
Box Type: 	 ‘rrgn’
Container: 	ScalableGroupEntry
Mandatory: 	No
Quantity:	Zero or One
The SVC rect region box documents the geometry information of the region represented by the current tier relative to the region represented by another tier. When extended spatial scalability was used to encode in the current tier a cropped region of another tier, then the geometry information of the cropped region can be signaled by this box. This box can also be used to signal the geometry information of a region-of-interest (ROI) when the current tier is a sub-picture tier. This area can either be static for all samples or vary at sample-by-sample basis. Note that it is possible that independent sub-pictures do not depend on all the tiers with lower tierID. In this case dependencies can be given with the tier dependency box.
B.2.6.2 Syntax
class RectRegionBox extends Box(‘rrgn’){
	unsigned int(16) base_region_tierID;
	unsigned int(1) dynamic_rect;
	unsigned int(7) reserved = 0;
	if(dynamic_rect == 0) {
		unsigned int(16) horizontal_offset;
		unsigned int(16) vertical_offset;
		unsigned int(16) region_width;
		unsigned int(16) region_height;
	}
}
B.2.6.3 Semantics
base_region_tierID gives the tierId value of the tier wherein the represented region is used as the base region for derivation of the region represented by the current tier.
dynamic_rect equal to 1 indicates that the region represented by the current tier is a dynamically changing rectangular part of the base region. Otherwise the region represented by the current tier is a fixed rectangular part of the base region.
horizontal_offset and vertical_offset give respectively the horizontal and vertical offsets of the top-left pixel of the rectangular region represented by the tier, in relative to the top-left pixel of the base region, in luma samples of the base region.
[bookmark: _Toc117242341]region_width and region_height give respectively the width and height of the rectangular region represented by the tier, in luma samples of the base region.
B.2.7 Buffering information box
B.2.7.1 Definition
Box Type: 	‘buff’
Container: 	ScalableGroupEntry or MultiviewGroupEntry or MultiviewGroupBox
Mandatory: 	No
Quantity:	Zero or One
The BufferingBox contains the buffer information of the covered bitstream subset. If the Buffering box is included in a Scalable Group entry or a Multiview Group entry, the covered bitstream subset consists of the tier and all tiers on which it depends. If the Buffering box is included in a Multiview Group box, the covered bitstream subset consists of the target output views of the multiview group and all the views required for decoding the target output views.
B.2.7.2 Syntax
class BufferingBox extends Box(‘buff’){
	unsigned int(16) 		operating_point_count
 	for (i = 0; i < operating_point_count; i++){
 		unsigned int (32) 	byte_rate
 		unsigned int (32) 	cpb_size
 		unsigned int (32) 	dpb_size
 		unsigned int (32)		init_cpb_delay
 		unsigned int (32) 	init_dpb_delay
 	}
}
B.2.7.3 Semantics
operating_point_count specifies the number of HRD operating points for the covered bitstream subset. Values of the HRD parameters are specified separately for each operating point. The value of operating_point_count shall be greater than 0.
byte_rate specifies the input byte rate (in bytes per second) to the coded picture buffer (CPB) of the HRD. The covered bitstream subset is constrained by the value of BitRate equal to byte_rate * 8 for NAL HRD parameters as specified in ISO/IEC 14496-10. For VCL HRD parameters, the value of BitRate is equal to byte_rate * 40 / 6. The value of byte_rate shall be greater than 0.
cpb_size specifies the required size of the coded picture buffer in bytes. The covered bitstream subset is constrained by the value of CpbSize equal to cpb_size * 8 for NAL HRD parameters as specified in ISO/IEC 14496-10. For VCL HRD parameters, the value of CpbSize is equal to cpb_size * 40 / 6.
	At least one pair of values of byte_rate and cpb_size of the same operating point shall conform to the maximum bit rate and CPB size allowed by profile and level of the covered bitstream subset.
dpb_size specifies the required size of the decoded picture buffer (DPB), in unit of bytes. The covered bitstream subset is constrained by the value of max_dec_frame_buffering equal to Min(16, Floor(dpb_size) / (PicWidthMbs * FrameHeightInMbs * 256 * ChromaFormatFactor))) as specified in ISO/IEC 14496-10.
init_cpb_delay specifies the required delay between the time of arrival in the CPB of the first bit of the first access unit and the time of removal from the CPB of the first access unit. It is in units of a 90 kHz clock. The covered bitstream subset is constrained by the value of the nominal removal time of the first access unit from the CPB, tr,n(0), equal to init_cpb_delay as specified in ISO/IEC 14496-10.
init_dpb_delay specifies the required delay between the time of arrival in the DPB of the first decoded picture and the time of output from the DPB of the first decoded picture. It is in units of a 90 kHz clock. The covered bitstream subset is constrained by the value of dpb_output_delay for the first decoded picture in output order equal to init_dpb_delay as specified in ISO/IEC 14496-10 assuming that the clock tick variable, tc, is equal to 1 / 90 000.
B.2.8 [bookmark: _Toc117242342]Tier dependency box
B.2.8.1 Definition
Box Type: 	‘ldep’
Container: 	ScalableGroupEntry or MultiviewGroupEntry
Mandatory: 	No for ScalableGroupEntry, Yes for MultiviewGroupEntry
Quantity:	Zero or One
The TierDependencyBox identifies the tiers that the current tier is dependent on.
B.2.8.2 Syntax
class TierDependencyBox extends Box(‘ldep’){
	unsigned int(16) entry_count;
	for (i=0; i < entry_count; i++)
		unsigned int(16) dependencyTierId;
}
B.2.8.3 Semantics
dependencyTierId gives the tierId of a tier on which the current tier is directly or indirectly dependent. Tier A is directly dependent on tier B if there is at least one NAL unit in tier A using inter prediction, inter-layer prediction, or inter-view prediction from tier B. Tier A is indirectly dependent on tier B if tier A is not directly dependent on tier B while decoding of tier A requires the presence of tier B. The value of dependencyTierId shall be smaller than the tierId of the current tier. The decoding of the current tier requires the presence of the tier indicated by dependencyTierId. All dependencies up to the tier with the lowest tierId shall be given with the TierDependencyBox.
B.2.9 [bookmark: _Toc117242343]SVC region of interest box
B.2.9.1 Definition
Box Type: 	‘iroi’
Container: 	ScalableGroupEntry
Mandatory: 	No
Quantity:	Zero or One
This box provides the geometry information of region-of-interest (ROI) divisions of the current tier, when the current tier is encoded to multiple (typically a large number of) independent rectangular ROIs.
NOTE	This box is typically used for interactive ROI use cases, where the server can interactively transmit only the NAL units belonging to the ROIs requested by a client.
The assignment of NAL units to a ROI is done in a time parallel metadata track as specified in Annex C.
A ROI ID, denoted as roi_id, is specified for each ROI in a tier. If iroi_type is equal to 0, roi_id is equal to the index of a ROI in a ROI raster scan (see ISO/IEC 14496-10 for the definition of "raster scan” and the use of “macroblock raster scan”) of the region represented by the tier starting with zero for the top-left ROI in the region. If iroi_type is equal to 1, roi_id is equal to the entry index i in the syntax of IroiInfoBox(). If iroi_type is equal to 2, roi_id is set to a number identifying the region of interest. In this case, the temporal metadata must contain statements mapping NAL units to roi_ids.
B.2.9.2 Syntax
class IroiInfoBox extends Box(‘iroi’){
	unsigned int(2) iroi_type;
	unsigned int(6) reserved = 0;
	if(iroi_type == 0) {
		unsigned int(8) grid_roi_mb_width;
		unsigned int(8) grid_roi_mb_height;
	}
	else if(iroi_type == 1){
		unsigned int(24) num_roi;
		for(int i=1; i<= num_roi; i++) {
			unsigned int(32) top_left_mb;
			unsigned int(8) roi_mb_width;
			unsigned int(8) roi_mb_height;
		}
	}
}
B.2.9.3 Semantics
iroi_type indicates the types of region division for all the ROIs. The value 0 indicates that all the ROIs (except possibly the right-most ones and the bottom-most ones) are of identical width and height. The value 1 indicates that the geometry information for each ROI is separately signalled. The value 2 indicates that the geometry can not be given. Values greater than 2 are reserved.
grid_roi_mb_width and grid_roi_mb_height indicate the width and height, respectively, in units of macroblocks, of the ROIs. All the ROIs have identical width and height, with the following exceptions.
When (PicWidthInMbs % grid_roi_mb_width) is not equal to 0, the right-most ROIs have a width equal to (PicWidthInMbs % grid_roi_mb_width) macroblocks.
When (PicHeightInMbs % grid_roi_mb_height) is not equal to 0, the bottom-most ROIs have a height equal to (PicHeightInMbs % grid_roi_mb_height) macroblocks.
	Where PicWidthInMbs and PicHeightInMbs are the visual width and height of a decoded picture of the tier representation in units of macroblocks, respectively, as specified in ISO/IEC 14496-10, (x % y) returns the remainder of x divided by y.
num_roi indicates the number of ROIs in a coded picture of the tier representation.
top_left_mb specifies the macroblock address of the first macroblock in raster scan order in the ROI of the current entry. The value of top_left_mb shall be equal to the syntax element first_mb_in_slice of the coded slices that belong to the current tier and that cover the top-left macroblock of the ROI of the current entry.
roi_mb_width and roi_mb_height indicate the width and height, respectively, in unit of macroblocks, of the ROI of the current entry.
B.2.10 [bookmark: _Toc117242344]SVC lightweight transcoding Box
B.2.10.1 Definition
Box Type: 	‘tran’
Container: 	ScalableGroupEntry
Mandatory: 	No
Quantity:	Zero or One
The presence of the box indicates that the bitstream represented by this tier (and tiers it depends upon) can be transcoded from an SVC stream to an AVC stream as indicated, and that the transcoded bitstream can be given the indicated profile and level indicators, with the indicated bit rates. The information on the resulting profile, level, and bit rate may be given for either of the entropy coding systems, or both.
B.2.10.2 Syntax
class TranscodingInfoBox extends Box(‘tran’){
	unsigned int(4) reserved = 0;
	unsigned int(2) conversion_idc;
	unsigned int(1) cavlc_info_present_flag;
	unsigned int(1) cabac_info_present_flag;
	if(cavlc_info_present_flag){
		unsigned int(24) cavlc_profile_level_idc;
		unsigned int(32) cavlc_max_bitrate;
		unsigned int(32) cavlc_avg_bitrate;
	}
	if(cabac_info_present_flag){
		unsigned int(24) cabac_profile_level_idc;
		unsigned int(32) cabac_max_bitrate;
		unsigned int(32) cabac_avg_bitrate;
	}
}
B.2.10.3 Semantics
conversion_idc equal to 0, 1, or 2 indicates that the representation of the current tier can be translated to an AVC bit-stream as specified in the semantics of the scalability information SEI message in ISO/IEC 14496-10 Annex G. conversion_idc equal to 3 is reserved.
cavlc_info_present_flag specifies whether the transcoding information of the translated bitstream using the Context-based Adaptive Variable Length Coding (CAVLC) entropy coder (i.e. when the syntax element entropy_coding_mode_flag in the translated bitstream is equal to 0) as specified in ISO/IEC 14496-10 Annex G is present.
cabac_info_present_flag specifies whether the transcoding information of the translated bitstream using the Context-based Adaptive Binary Arithmetic Coding (CABAC) entropy coder (i.e. when entropy_coding_mode_flag in the translated bitstream is equal to 1) as specified in ISO/IEC 14496-10 Annex G is present.
cavlc_profile_level_idc is the exact copy of the three bytes comprised of profile_idc, constraint_set0_flag, constraint_set1_flag, constraint_set2_flag, constraint_set3_flag and level_idc, if these syntax elements were used to specify the profile and level compliancy of the transcoded bitstream using the CAVLC entropy coder.
cavlc_max_bitrate specifies the maximum bit rate in bits/second (units of 1000 bits/sec), over any window of one second, that is provided by the transcoded bitstream using the CAVLC entropy coder.
cavlc_avg_bitrate specifies the average bit rate in bits/second (units of 1000 bits/sec) that is provided by the transcoded bitstream using the CAVLC entropy coder.
cabac_profile_level_idc is the exact copy of the three bytes comprised of profile_idc, constraint_set0_flag, constraint_set1_flag, constraint_set2_flag, constraint_set3_flag and level_idc, if these syntax elements were used to specify the profile and level compliancy of the transcoded bitstream using the CABAC entropy coder.
cabac_max_bitrate specifies the maximum bit rate in bits/second (units of 1000 bits/sec), over any window of one second, that is provided by the transcoded bitstream using the CABAC entropy coder.
cabac_avg_bitrate specifies the average bit rate in bits/second (units of 1000 bits/sec) that is provided by the transcoded bitstream using the CABAC entropy coder.
B.2.11 [bookmark: _Toc117242345]Scalable and multiview group entries
B.2.11.1 Introduction
[bookmark: _Toc118693427][bookmark: _Ref15099932][bookmark: _Ref109117869][bookmark: _Toc109627207]Each scalable or multiview group entry is associated with a groupID and a tierID. The tierID entries are ordered in terms of their dependency signalled by the value of tierID. A larger value of tierID indicates a higher tier. A value 0 indicates the lowest tier. Decoding of a tier is independent of any higher tier but may be dependent on lower tiers. Therefore, the lowest tier can be decoded independently, decoding of tier 1 may be dependent on tier 0, decoding of tier 2 may be dependent on tiers 0 and 1, and so on. A tier can include data from one or more layers or views in the video stream.
If two tiers are mutually independent in an SVC stream, then it is required that the tier that has the greater importance, in the view of the content creator, shall be the lower tier (i.e. have the smaller tierID).
NOTE	For example, two tiers are mutually independent (though there may be some lower tiers that they both depend on). The first tier, if presented, has higher frame rate but lower individual picture quality, while the second tier, if presented, has lower frame rate but higher individual picture quality. If the file composer can identify that the first tier offers a better user experience for this content than the second tier, then the first tier is assigned a lower tierID value than the second tier.
There shall be exactly one primary definition for each tier. For each ScalableGroupEntry or MultiviewGroupEntry, when the field primary_groupID is equal to the field groupID, the group is the primary definition of this tier, and the following applies.
· TierInfoBox and PriorityRangeBox shall be present.
· For a certain tier, if any of the optional boxes is not present, then that information is not defined for that tier (there is no inheritance of tier information). If for a certain tier no TierDependencyBox is present then this tier may depend on all tiers with lower tierID.
· If the InitialParameterSetBox is present then the parameter sets needed for decoding this tier and all the lower tiers it depends on are indicated with this box. If this box is not present then it is not signalled whether all the parameter sets given by the SVCDecoderConfigurationRecord or MVCDecoderConfigurationRecord are needed. If parameter set streams are used, then the InitialParameterSetBox shall not be present.
· The values of tierIDs are not required to be contiguous.
Additionally, for each ScalableGroupEntry, when the field primary_groupID is equal to the field groupID, SVCDependencyRangeBox shall be present. Additionally, for each MultiviewGroupEntry, when the field primary_groupID is equal to the field groupID, ViewIdentifierBox shall be present.
For each specified tierID, there shall be at least one NAL unit that is associated with it. In other words, it is disallowed to specify tiers that are not used in the track.
Each NAL unit in the elementary stream is associated with a tierID value as follows. First, each sample is associated with a map of groupID values through the sample grouping of type “scnm” as specified subsequently. The “scnm” sample grouping therefore indicates the association between NAL units and groupID values within each sample. Values of groupID can then be associated with values of tierID using the sample group description box of type “scif” or “mvif”. NAL units associated with a particular tierID value may require all or some of the NAL units associated with smaller tierID values for proper decoding operation, but will never require any NAL unit associated with a greater tierID value. (i.e., dependency will only exist in the direction of lower tiers).
A Server or Player can choose a subset of tierID values that will be needed for proper decoding operation based on the values of the description fields present within the entries (e.g., frame rate, etc) of the sample group description box of type “scif” or “mvif”.
Since the ScalableGroupEntry and the MultiviewGroupEntry are of variable length and have no internal length field, the SampleGroupDescription Box which contains either of them must carry length information for its entries according to version 1 of the SampleGroupDescription box definition.
The data in a particular tier may be protected; this is indicated by the presence of a ProtectionSchemeInfoBox in the tier definition. If any tier is so protected then:
· If the base layer or base view (AVC) is protected, then the sample entry must also be transformed by changing its four-character code, and adding a ProtectionSchemeInfoBox, in the standard way.
· If any layer or view is protected in a track, a ProtectionSchemeInfoBox of some kind must be added to the sample entry (this is the ‘warning’ that some protection is in effect). The original format box in the ProtectionSchemeInfoBox is required but may not be needed as the four-character code in the SampleEntry might not have changed if, for example, the base layer is un-protected.
· Extractors may point to data in protected SVC streams; the byte references are to data ‘on disc’ (i.e. possibly protected). When protecting, if extractors are permitted by the scheme in use, and the protection changes data sizes, then extractors may need re-writing.
B.2.11.2 Scalable group entry
B.2.11.2.1 Definition
Group Type: 	‘scif’
Container: 	Sample Group Description Box ('sgpd')
Mandatory: 	No
Quantity:	Zero or More
B.2.11.2.2 Syntax
class ScalableGroupEntry() extends VisualSampleGroupEntry ('scif') {
	unsigned int(8) groupID;
	unsigned int(8) primary_groupID;
	unsigned int(1) is_tier_IDR;
	unsigned int(1) noInterLayerPredFlag;
	unsigned int(1) useRefBasePicFlag;
	unsigned int(1) storeBaseRepFlag;
	unsigned int(1) is_tl_switching_point;
	unsigned int(3) reserved = 0;
	unsigned int(8) tl_switching_distance;
	
	if (groupID == primary_groupID)	// primary definition of tier
	{
		TierInfoBox(); 				// Mandatory
		SVCDependencyRangeBox();	// Mandatory
		PriorityRangeBox();			// Mandatory

		//Optional Boxes or fields may follow when defined later
		TierBitRateBox();						// optional
		RectRegionBox();						// optional
		BufferingBox();						// optional
		TierDependencyBox(); 				// optional
		InitialParameterSetBox();			// optional
		IroiInfoBox();							// optional
		ProtectionSchemeInfoBox();			// optional
		TranscodingInfoBox();				// optional
	}
}
B.2.11.2.3 Semantics
groupID gives the identifier of the group entry; groupIDs are arbitrary values but shall be unique.
primary_groupID specifies the group containing the primary definition of this tier. If this value is equal to the value of groupID then this group is the primary definition of this tier.
is_tier_IDR when set to 1, indicates that, for the members of this group, the coded pictures of the representation of the highest layer (i.e. the layer with the highest value of dependency_id as specified in ISO/IEC 14496-10 Annex G) are IDR pictures. A value of 0 indicates that, for the members of this group, the coded pictures of the representation of the highest layer are not IDR pictures.
noInterLayerPredFlag when set to 1, indicates that the members of this group are with no_inter_layer_pred_flag equal to 1 and coded without using inter layer prediction. A value of 0 indicates that the members of this group may have been coded using inter layer prediction.
useRefBasePicFlag when set to 1 indicates that the members of this group are with use_ref_base_pic_flag equal to 1 and using decoded base representations for inter prediction such that mismatch due to discarding of NAL units with quality_id greater than 0 is controlled. A value of 0 indicates that the members of this group may have any value of use_ref_base_pic_flag.
storeBaseRepFlag when set to 1 indicates that the members of this group are with store_base_rep_flag equal to 1 such that the corresponding decoded base representations are stored when the decoding operates at the current tier. A value of 0 indicates that the members of this group may have any value of store_base_rep_flag.
is_tl_switching_point when set to 1, indicates that, for the members of this group, those having the highest value of temporal_id as specified in ISO/IEC 14496-10 Annex G are temporal layer switching points. Let the highest value of temporal_id of the members of this group be tId, then the bitstream can be switched at any of the members having temporal_id equal to tId from the temporal layer with temporal_id equal to tId-1 to the temporal layer with temporal_id equal to tId, provided that the members with temporal_id equal to tId-1 indicated by tl_switching_distance have been processed (transmitted and decoded). is_tl_switching_point equal to 0 indicates that the members of this group having the highest value of temporal_id as specified in ISO/IEC 14496-10 Annex G may or may not be temporal layer switching points.
tl_switching_distance is used when is_tl_switching_point is 1. It indicates the number of samples of the temporal layer with temporal_id equal to tId-1 that must be decoded to ensure decodability of the stream at or above temporal layer tld from the switching point onward. The value 0 indicates a temporal switching point with no dependency on the lower temporal layer. This required distance for a particular sample may be reduced by a temporal layer switching distance statement in the time parallel metadata track for a specific sample.
B.2.11.3 Multiview group entry
B.2.11.3.1 Definition
Group Type:	‘mvif’
Container: 	Sample Group Description Box ('sgpd')
Mandatory: 	No
Quantity:	Zero or More
B.2.11.3.2 Syntax
class MultiviewGroupEntry() extends VisualSampleGroupEntry ('mvif') {
	unsigned int(8) groupID;
	unsigned int(8) primary_groupID;
	unsigned int(4) reserved = 0;
	unsigned int(1) is_tl_switching_point;
	unsigned int(3) reserved = 0;
	unsigned int(8) tl_switching_distance;
	
	if (groupID == primary_groupID)	// primary definition of tier
	{
		ViewIdentifierBox();			// Mandatory
		TierInfoBox(); 				// Mandatory
		TierDependencyBox(); 		// Mandatory
		PriorityRangeBox();			// Mandatory

		//Optional Boxes or fields may follow when defined later
		TierBitRateBox();						// optional
		BufferingBox();						// optional
		InitialParameterSetBox();			// optional
		ProtectionSchemeInfoBox();			// optional
		ViewPriorityBox();					// optional
	}
}
B.2.11.3.3 Semantics
groupID gives the identifier of the group entry; groupIDs are arbitrary values but shall be unique.
primary_groupID specifies the group containing the primary definition of this tier. If this value is equal to the value of groupID then this group is the primary definition of this tier.
is_tl_switching_point when set to 1, indicates that, for the members of this group, those having the highest value of temporal_id as specified in ISO/IEC 14496-10 Annex H or Annex I are temporal layer switching points. Let the highest value of temporal_id of the members of this group be tId, then the bitstream can be switched at any of the members having temporal_id equal to tId from the temporal layer with temporal_id equal to tId-1 to the temporal layer with temporal_id equal to tId, provided that the members with temporal_id equal to tId-1 indicated by tl_switching_distance have been processed (transmitted and decoded). is_tl_switching_point equal to 0 indicates that the members of this group having the highest value of temporal_id as specified in ISO/IEC 14496-10 Annex H or Annex I may or may not be temporal layer switching points.
tl_switching_distance is used when is_tl_switching_point is 1. It indicates the number of samples of the temporal layer with temporal_id equal to tId-1 that must be decoded to ensure decodability of the stream at or above temporal layer tld from the switching point onward. The value 0 indicates a temporal switching point with no dependency on the lower temporal layer. This required distance for a particular sample may be reduced by a temporal layer switching distance statement in the time parallel metadata track for a specific sample.
B.3 [bookmark: _Toc117242346][bookmark: _Toc370302994]Mapping NAL units to map groups and tiers
B.3.1 [bookmark: _Toc118693428][bookmark: _Toc117242347]Introduction
In order to describe scalability or view hierarchy within an SVC, MVC, or MVD access unit, two kinds of sample groups are used:
a) a group to describe sections of a sample. For each of the groups, a ScalableGroupEntry or a MultiviewGroupEntry exists which defines the group properties. Note that these describe tiers, not the entire stream, and therefore describe the NAL units belonging to one tier at any instant, not the entire AU. See B.1 and B.2.
b) a map group, that describes the mapping of each NAL unit inside an AU to a map group (of grouping_type ‘scnm’). For each different sequence of NAL units belonging to a particular map group, a ScalableNALUMapEntry exists. Within an AU a map group includes all NAL units of a tier.
Defining map groups requires that there is a limited number of map grouping patterns for all access units. If there is a varying number of NAL units in successive access units for a given tier, Aggregators can be used to make these varying structures consistent and to reduce the number of map groups required.
B.3.2 [bookmark: _Toc118693429][bookmark: _Toc117242348]Map group definition
Group Type: 	‘scnm’
Container: 	Sample Group Description Box ('sgpd')
Mandatory: 	No
Quantity:	Zero or More
Each sample is associated with a group_description_index in the SampleToGroupBox with grouping_type ‘scnm’. A SampleGroupDescriptionBox with grouping_type ‘scnm’ contains a ScalableNALUMapEntry for each group_description_index.
class ScalableNALUMapEntry() extends VisualSampleGroupEntry ('scnm') {
	unsigned int(8) reserved = 0;
	unsigned int(8) NALU_count;
	for (i=1; i<= NALU_count; i++)
		unsigned int(8) groupID;
	}
}
Each sample belonging to a given map group has exactly NALU_count NAL units in it (possibly by using aggregators to group together NAL units of the same layer or view). Each of those NAL units maps to the corresponding scalable or multiview group as described by the groupID.
NOTE 1	An arbitrarily chosen groupID is used here, rather than the more obvious scalable or multiview group index from the sample group description box, so that if scalable groups are deleted or re-ordered these operations can be detected and handled. Note also that there may be one or more scalable or multiview groups in a given tier.
NOTE 2	If movie fragments are used, new maps cannot be introduced in the fragments (only the association of the new samples to pre-existing maps). In this case, care should be taken to introduce, in the movie box, all the maps that may be needed.
B.4 [bookmark: _Toc117242349][bookmark: _Toc370302995]Decode re-timing groups
B.4.1 [bookmark: _Toc117242350]Introduction
Group Type: 	‘dtrt’
Container: 	Sample Group Description Box ('sgpd')
Mandatory: 	No
Quantity:	Zero or More
When temporal layers are discarded, re-timing the decoding times of some or all samples may be needed to ensure that the stream complies with all buffer and HRD requirements. Also re-timing may improve the transmission and decoding process. Composition times are not affected. If the stream is 'thinned' to tierID X, and there is a re-timing sample grouping for tierID Y, where Y is the largest such tierID less than X that contains re-timing sample grouping, then the adjusted decode time is the time from the time-to-sample table (the original decode time), plus the given re-timing: newDTS = oldDTS + delta. The CTS is given as usual by the composition time to sample table: CTS = oldDTS + compositionOffset, which is CTS = newDTS - delta + compositionOffset.
This re-timing is given as sample groups, which are associated with samples by using the normal sample-to-group structures. Each group provides a set of re-timing deltas and their associated tierIDs. The group definition must be ordered by increasing tierID.
B.4.2 [bookmark: _Toc117242351]Syntax
class DecodeRetimingEntry() extends VisualSampleGroupEntry ('dtrt') {
	unsigned int(8) tierCount;
	for (i=1; i<=tierCount; i++) {
		unsigned int(16) tierID;
		signed int(16) delta;
	}
}
B.4.3 [bookmark: _Toc117242352]Semantics
tierID gives the ID of a tier that maps to a temporal level; the tiers with equal or greater tierID, up to the next tierID in this group, use the given decode time delta
delta provides an adjustment for the decode time
B.5 [bookmark: _Toc117242353][bookmark: _Toc370302996]View Priority Sample Grouping
B.5.1 [bookmark: _Toc117242354]Definition
View Priority sample grouping is used to label views with priorities based on content. The higher the content priority, the more interesting or important the view is for the viewer (audience). Note that the ‘structural’ priority id used in the NAL unit header extension has another meaning and indicates dependencies on other views due to encoding constraints rather than the importance of the view itself, and that though coding dependency imposes constraints on priority_id values, priority_id values do not necessarily indicate coding dependencies.
Content priority id can help a player or viewer selecting interesting views and can also be used as additional information when pruning views from a file. In the latter case, content priority indicates where pruning is least harmful when several views have similar structural priorities due to encoding constraints.
Either version 0 or version 1 of the Sample to Group Box may be used with the View Priority sample grouping. If version 0 of the Sample to Group Box is used and the MVC View Priority Assignment URI box is present in the sample entry, the used priority assignment method is indicated by the first URI entry of the MVC View Priority Assignment URI box. If version 1 of the Sample to Group Box is used and the MVC View Priority Assignment URI box is present in the sample entry, grouping_type_parameter is a 1-based index to the MVC View Priority Assignment URI box. If grouping_type_parameter points to a non-existing item in the MVC View Priority Assignment URI box, or version 1 of the Sample to Group Box is used and the MVC View Priority Assignment URI box is not present in the sample entry, grouping_type_parameter has no defined semantics but the same priority assignment method should be used consistently for a particular value of grouping_type_parameter.
NOTE	 Sub-bitstreams extracted according to content_priority_id only might not form a conforming bitstream; for example, non-output views might have low content priority but be needed for decoding some output views.
B.5.2 [bookmark: _Toc117242355]Syntax
class ViewPriorityBox extends Box (‘vipr’) {
	for (i=0; i++) {		// To end of box
		unsigned int(6)	reserved = 0;
		unsigned int(10)	view_id;
		unsigned int(32)	content_priority_id;
	}
}
class ViewPriorityEntry() extends VisualSampleGroupEntry (’vipr’)
{
	ViewPriorityBox();
}
B.5.3 [bookmark: _Toc117242356]Semantics
view_id identifies the view. See the View Identifier box.
content_priority_id indicates real-world view priority based on content, i.e., not related to encoding structure. A view that has a lower value than another view has a higher priority than that view.
B.6 [bookmark: _Toc370302997]Sub track definitions
B.6.1 General
Tracks may be divided into sub tracks that can be assigned alternate and switch groups that indicate whether those (sub) tracks are alternatives to each other and whether one can switch between them during a session. Alternate and switch groups can consist of sub tracks as well as entire tracks.
Codec-specific sub track definitions for SVC, MVC, and MVD are defined below. If more than one sub track definition is present for a sub track, the union of the sub track definitions defines the sub track.
B.6.2 SVC Sub Track Layer box
B.6.2.1 Definition
Box Type:	‘sstl’
Container:	Sub Track Definition box (‘strd’)
Mandatory:	No
Quantity:	Zero or more
B.6.2.2 Syntax
aligned(8) class SVCSubTrackLayerBox
	extends FullBox(‘sstl’, 0, 0) {
	unsigned int(16) item_count;
	for(i = 0; i< item_count; i++) {
		unsigned int(3)	dependency_id;
		unsigned int(4)	quality_id;
		unsigned int(3)	temporal_id;
		unsigned int(6)	priority_id;
		bit(2)	dependency_id_range;
		bit(2) 	quality_id_range;
		bit(2)	temporal_id_range;
		bit(2)	priority_id_range;
	}
}
B.6.2.3 Semantics
The provided ranges of SVC layer parameters dependency_id, quality_id, temporal_id and priority_id (DQTP) specify the parts of the track that belong to the sub track. A unique combination of DQTP determines an SVC layer. The union of different DQTP values (and therefore the union of SVC layers) describes the sub track defined by this box.
item_count counts the number of DQTP quadruplets listed in this box.
dependency_id indicates the dependency_id value of the NAL units.
quality_id indicates the quality_id value of the NAL units.
temporal_id indicates the temporal_id value of the NAL units.
priority_id indicates the priority_id value of the NAL units.
dependency_id_range indicates the range of dependency_id values that belong to the sub track.
quality_id_range indicates the range of quality_id values that belong to the sub track.
temporal_id_range indicates the range of temporal_id values that belong to the sub track.
priority_id_range indicates the range of priority_id values that belong to the sub track.
Each SVC layer parameter provides one value that together with the corresponding range parameter specifies the SVC layer parameter values that belong to the sub track. For each range indication, those values are
0x00	exactly equal to the specified value,
0x01	less than or equal to the specified value,
0x02	greater than or equal to the specified value,
0x03	any, i.e., the parameter is not specified.
B.6.3 MVC Sub Track View box
B.6.3.1 Definition
Box Type:	‘mstv’
Container:	Sub Track Definition box (‘strd’)
Mandatory:	No
Quantity:	Zero or more
B.6.3.2 Syntax
aligned(8) class MVCSubTrackViewBox
	extends FullBox(‘mstv’, 0, 0) {
	unsigned int(16) item_count;
	for(i = 0; i< item_count; i++) {
		unsigned int(10)	view_id;
		unsigned int(4)	temporal_id;
		unsigned int(2)	reserved;
	}
}
B.6.3.3 Semantics
The list of view_id and temporal_id (VT) pairs specifies the parts of the track that belong to the sub track. A combination of VT determines one view at one temporal resolution. Hence, each VT pair listed in the MVC Sub Track View box determines a single MVC or MVD operating point containing one target output view. The union of different VT pairs of values (and therefore the union of MVC views at a particular temporal resolution that is indicated by the greatest value of all the temporal_id values) describes the sub track defined by this box.
item_count counts the number of VT pairs listed in this box.
view_id indicates the view_id value in the MVC or depth NAL unit header.
temporal_id indicates the temporal_id value in the MVC or depth NAL unit header.
B.6.4 Sub Track Tier box
B.6.4.1 Definition
Box Type:	‘stti’
Container:	Sub Track Definition box (‘strd’)
Mandatory:	No
Quantity:	Zero or more
B.6.4.2 Syntax
aligned(8) class SubTrackTierBox
	extends FullBox(‘stti’, 0, 0) {
	unsigned int(16) item_count;
	for(i = 0; i< item_count; i++) {
		unsigned int(16)	tierID;
	}
}
B.6.4.3 Semantics
The union of tierIDs in this box describes the sub track defined by this box. The tier can be either an SVC, MVC, or MVD tier.
item_count counts the number of tiers listed in this box.
tierID gives the identifier of the tier(s) contained in this sub track.
B.6.5 MVC Sub Track Multiview Group box
B.6.5.1 Definition
Box Type:	‘stmg’
Container:	Sub Track Definition box (‘strd’)
Mandatory:	No
Quantity:	Zero or more
B.6.5.2 Syntax
aligned(8) class MVCSubTrackMultiviewGroupBox
	extends FullBox(‘stmg’, 0, 0) {
	unsigned int(16) item_count;
	for(i = 0; i< item_count; i++) {
		unsigned int(32)	MultiviewGroupId;
	}
}
B.6.5.3 Semantics
The union of MultiviewGroupIds in this box describes the sub track defined by this box.
item_count counts the number of multiview groups listed in this box.
MultiviewGroupId the identifier of the multiview group(s) contained in this sub track.
Annex C [bookmark: _Ref117241025][bookmark: _Toc117242357][bookmark: _Toc374356667][bookmark: _Toc232234513][bookmark: _Toc370302998][bookmark: _Toc370303303]
(normative)

Temporal metadata support
C.1 [bookmark: _Toc117242358][bookmark: _Toc370302999]Introduction
A timed metadata track, as defined in ISO/IEC 14496-12, may be used to provide temporal information about the associated video track.
This metadata is stored in metadata tracks. These tracks have a handler type ‘meta’ and are linked to the media track using a track reference of type ‘cdsc’ as specified in ISO/IEC 14496-12. The metadata is stored in samples, the decoding time of which is equal to the media samples it describes. Composition offsets are permitted but not required in timed metadata tracks, but, if used, the composition timing must match the composition timing of the associated media track.
The metadata is structured using conceptual statements. Each statement has a one-byte type field – indicating what it is asserting, and a size, which is the length of its payload in bytes, not including the size and type fields. The length of the size field depends on the type field.
There are two important ‘structuring’ statements, groupOfStatements and sequenceOfStatements.
The statement groupOfStatements allows several statements to be made about one thing, by grouping them. A groupOfStatements contains a set of statements all of which are asserted about the thing described.
The statement type sequenceOfStatements may be used in the description of the entire sample or of a NAL unit in the media stream that is an Aggregator or Extractor, to describe its sequence of NAL units. A sequenceOfStatements contains a set of statements, which are in one-to-one correspondence with the sequence of contained objects in that which is described.
Each metadata sample is a collection (a group or sequence) of one or more statements about the temporally aligned media sample. Each of the statements in the collection may have a default type from the sample entry, or have an explicit single type in each statement. Similarly, the default length may be indicated in the sample entry, or be inline in each sample. The overall sample is a collection of N statements. The sample entry provides the statement type of each sample (group or sequence), and (optionally) the default type and length values of the statements in the sample. It can also supply a statement which is true of every sample described by this metadata (an ‘overall’ statement).
There is a set of pre-defined statement types defined in this International Standard, and there is explicit provision for extension statements by other bodies.
There are statement types reserved to ISO, and other statement types reserved for dynamic assignment. Dynamic assignment consists of a table in the Sample Entry of the metadata track, containing pairs mapping a local statement ID to URIs.
The allocation of different categories of statement types is as follows.
0	no metadata (empty statement), reserved to ISO
1-95	short, reserved to ISO
96-191	short, user extension
192-223	long, reserved to ISO
224-255	long, user extension
The URIs are used in the same sense as namespace identifiers in XML; they are not guaranteed to be de-referenceable. If URLs are used, they should contain a month indication in the form yyyymm, indicating that this use of the domain in the URL was authorized by the owner of that domain as of that month. An example may be:
2 	maps to http://www.example.com/200610/gateway-types#quality-model
For the purposes of this metadata, a prefix NAL unit and its associated AVC NAL unit are considered as one NAL unit, and the prefix NAL unit provides the NAL unit header values except for the NAL unit type, which is taken from the associated AVC NAL unit.
An aggregator NAL unit may be described, and if it is described by a sequence, the elements in the sequence correspond one-one to the NAL units aggregated by both inclusion and reference. Similarly, an extractor may be described, and if it is described by a sequence, the elements in the sequence correspond one-one to the NAL units in the extracted data.
[bookmark: _Toc117242359]In all sequences, SEI NAL units are treated as any other NAL unit. If they need to be skipped in sequences, an empty statement or a NAL header statement can be used.
C.2 [bookmark: _Toc370303000]Connection to the video media data
A metadata sample may store a data structure for each NAL unit in the media data stream. The metadata sample must be temporally aligned to the media data sample (in decoding time).
[image:]
[bookmark: _Ref201138446][bookmark: _Ref131182202][bookmark: _Ref61407055][bookmark: _Ref61407062]Figure C.1 – Connection between media data and metadata
[bookmark: _Toc117242360]NOTE	As illustrated in Figure C.1 synchronization between the NAL units in the media data stream and the corresponding meta information is done by using the same structure in both streams (e.g. by counting NAL units and metadata statements).
C.3 [bookmark: _Toc370303001]SVC meta data sample entry
C.3.1 [bookmark: _Toc117242361]Definition
The SVC Metadata Sample Entry extends the Metadata Sample Entry and includes a configuration box which defines some default values for the samples and statements. It can also supply a statement which is valid for every sample described by this metadata sample entry, and a mapping of user extension statements to URIs.
The following example sample entry field values demonstrate different default possibilities:
sample_statement_type = groupOfStatements, default_statement_type=0, default_statement_length=0
— this is the ‘normal’ case, a group of statements about the entire sample
sample_statement_type = sequenceOfStatements, default_statement_type=0, default_statement_length=0
— where no statement needs to be made about the overall sample
sample_statement_type = sequenceOfStatements, default_statement_type=NALHeaderStatement, default_statement_length=N
— compact samples consisting merely of NAL headers of length N, for each aligned NAL unit
If priority override statements are used, then a priority assignment box may be present, providing the names of the methods referenced. When the box occurs here, the method_count may be greater than 1.
C.3.2 [bookmark: _Toc117242362]Syntax
class statement (default_type, default_length) {
	int st_type, field_size = 0;		// local variables, not fields
	int st_length = 0, body_len = 0;	// local variables, not fields

	if (default_type != 0) st_type = default_type;
	else {
			unsigned int(8)	statement_type;
			st_type = statement_type;
			st_length = 1;
	}

	if (default_length != 0) body_len = default_length;
	else {
		if (st_type >= 192) field_size = 4;
		else if (st_type > 0) field_size = 1;
		else	{ body_len = 0; field_size = 0; }
		if (field_size > 0) {
			unsigned int(8*field_size) statement_length;
			body_len = statement_length;
			st_length += field_size;
		}
	}

	unsigned int(8) statement_body[body_len];
	st_length += body_len;
}
class SVCMetadataSampleConfigBox extends FullBox(‘svmC’)
{
	int i;		// local variable, not a field
	unsigned int(8) sample_statement_type;	/* normally group, or seq */
	unsigned int(8) default_statement_type;
	unsigned int(8) default_statement_length;
	unsigned int(8) entry_count;
	for (i=1; i<=entry_count; i++) {
		unsigned int(8) statement_type;	// from the user extension ranges
		string statement_namespace;
	}
	statement(0,0) overall_statement;	/* NB may be the empty statement, type==0 */
}
class SVCPriorityLayerInfoBox extends Box(‘qlif’){
	unsigned int(8) pr_layer_num;
	for(j=0; j< pr_layer_num; j++){
		unsigned int(8) pr_layer;
		unsigned int(24) profile_level_idc;
		unsigned int(32) max_bitrate;
		unsigned int(32) avg_bitrate;
	}
}
class SVCMetadataSampleEntry () extends MetadataSampleEntry(‘svcM‘)
{
	SVCMetadataSampleConfigBox	config;
	SVCPriorityAssignmentBox	methods;		// optional
	SVCPriorityLayerInfoBox		priorities;	// optional
}
class MetaDataSample {
	int totalLength; 		// local variable, not a field
	for (totalLength = 0; totalLength<sample_size;) {
		statement(default_statement_type, default_statement_length) the_statement;
		totalLength += the_statement.st_length;
	}
}
C.3.3 [bookmark: _Toc117242363]Semantics
statement_type - an integer identifying a statement type defined in this International Standard, or dynamically defined in the corresponding sample entry of this track. In the SVCMetaDataSampleEntry this entry also defines the namespace mapping for this statement type of a dynamic statement. When used to define a mapping, the statement_type must have a value taken from the ranges reserved for user extensions.
statement_length - the length in bytes of the statement body, not including the statement_type and statement_length fields.
statement_namespace - gives a valid URI, in null-terminated UTF-8 characters; if a URL, it should contain a month in the form yyyymm, defined or approved by the owner of the domain name in that URL as of the month indicated.
statement_body - the contents of the statement, as defined by the statement type
sample_statement_type - describes whether the collection of statements in each sample associated with this sample entry is either a group (each describing the whole sample) or a sequence (each mapped to a NAL unit of the sample), and therefore normally takes the value groupOfStatements or sequenceOfStatements.
default_statement_type - in the case where all the first-level statements in all the associated samples have the same type, that type can be supplied here and then not be present in each sample; this would normally only be used when the sample_statement_type is sequenceOfStatements. If no default is needed, then 0 should be supplied in this field.
default_statement_length - in the case where all statements in all the associated samples have the same length, that length can be supplied here and then not be present in each sample. If no default is needed, then 0 should be supplied in this field.
pr_layer_num specifies the number of the priority layer.
pr_layer specifies the identifier of the priority layer. Priority layer identifiers are unique across the stream that is mapped to this metadata stream.
profile_level_idc specifies the profile and level compliancy of the bitstream of the priority layer identified by pr_layer. profile_level_idc is the exact copy of the three bytes comprised of profile_idc, constraint_set0_flag, constraint_set1_flag, constraint_set2_flag, constraint_set3_flag and level_idc, if these syntax elements were used to specify the profile and level compliancy of the bitstream of the priority layer.
max_bitrate specifies the maximum bit rate, in units of 1000 bits per second, of the bitstream of the priority layer identified by pr_layer in any one-second time window.
avg_bitrate specifies the average bit rate, in units of 1000 bits per second, of the bitstream of the priority layer identified by pr_layer.
C.4 [bookmark: _Toc117242364][bookmark: _Toc370303002]Helper Functions
function next_NALu (){
		// the next statement is made about the next NAL unit
}
C.5 [bookmark: _Toc117242365][bookmark: _Toc370303003]Statement Types
The following statement types, and their required contents, are defined.
0	emptyStatement: when nothing needs to be said about the thing described (allows skipping of an item in a sequence)
192	groupOfStatements: the contents of the statement are exactly a set of statements, all of which apply to the described sample or NAL unit
class groupOfStatementsBody(size) {
	int i=0;
	do {
		statement(0,0) the_statement;
		i+=the_statement.st_length;
	} while (i < size);
}
193	sequenceOfStatements: the contents of the statement are exactly a set of statements, which describe, in one-to-one correspondence, the contents of a sample, extractor or aggregator (except note that the inlinesequenceOfStatements corresponds to one or more NAL units)
class sequenceOfStatementsBody(size) {
	int i=0;
	do {
		statement(0,0) the_statement;
		i+=the_statement.st_length;
		next_NALu();
	} while (i < size);
}
194	sequenceOfFixedStatements: same semantics as for sequenceOfStatements, except that the contents of the statement are a one-byte statement type, followed by a one-byte length indication; then follows a number of statements of that single type, each of the same length. The number of statements following is given by (statement_length‑2)/fixedLength. The fixedLength shall be greater than zero.
class sequenceOfFixedStatementsBody(size) {
	int i=2;
	unsigned int(8) fixedType;
	unsigned int(8) fixedLength;
	do {
		statement(fixedType, fixedLength) the_statement;
		i+=fixedLength;
		next_NALu();
	} while (i < size);
}
195	inlineGroupOfStatements; this structure can be used to describe a consecutive set of items (NAL units). This structure starts with a one-byte count of the number of items described, and then describes all these items together with a number of statements (like a groupOfStatements). If individual statements about each item are also desired, a sequenceOfStatements may be included in the inlineGroupOfStatements to describe the items individually. In this case the included sequenceOfStatements shall describe as many items as specified by the value of count.
class inlineGroupOfStatementsBody(size) {
	int i=1;
	unsigned int(8) count;
	do {
		statement(0,0) the_statement;
		i+=the_statement.st_length;
	} while (i < size);
	for (j=0; j<count; j++)
		next_NALu();
}
1	itemLengthStatement: 1, 2, or 4 bytes of payload containing the length of the corresponding item (sample, group, or NAL unit)
2	aggregatorStatement: indicates that the item described is an Aggregator. If contained in a groupOfStatements about the Aggregator, the aggregatorStatement shall be the first statement in the groupOfStatements. The groupOfStatements may contain additional statements about the whole aggregation and a sequenceOfStatements to individually describe the NAL units aggregated. An aggregatorStatement contains no body.
3	extractorStatement: indicates that the item described is an Extractor. If contained in a groupOfStatements about the Extractor, the extractorStatement shall be the first statement in the groupOfStatements. The groupOfStatements may contain additional statements about all NAL units referenced and a sequenceOfStatements to individually describe the NAL units referenced. An extractorStatement contains no body.
4	overridePriorityStatement:
class overridePriorityStatementBody(size) {
	unsigned int(8) priority_assignment_method_index;
	bit(2) reserved = 0;
	bit(6) priority_id;
}
Contains a value for priority_id which may replace the priority_id value in the NAL unit header of the corresponding NAL unit. The field priority_assignment_method_index identifies the method used to calculate the priorities, as a 1-based index into the priority assignment URI box in the metadata sample entry (if any). There may be more than one of these statements for a given NAL unit; if there are several, they must differ in the value of the priority_assignment_method_index. If a stream is logically or physically re-labelled with priority_id values from these statements, then the same method must be used for all NAL units. If, for a given NAL unit, the priority_id value desired for a given method is the same as the value in the bitstream, then this statement may be omitted for that method for that NAL unit.
5	priorityRangeStatement: This is used when multiple NAL units are described. This contains two bytes, each containing a priority value in their lower 6 bits. The first is the lowest P value and the second the highest in the matching NAL units.
class priorityRangeStatementBody(size) {
	bit(2) reserved = 0;
	bit(6) min_priority_id;
	bit(2) reserved = 0;
	bit(6) max_priority_id;
}
6	DTQrangeStatement: This is used when multiple NAL units are described. The fields are defined exactly as for the SVCDependencyRangeBox.
class DTQRangeStatementBody(size) {
	bit(3) min_dependency_id;
	bit(3) min_temporal_id;
	bit(6) reserved = 0;
	bit(4) min_quality_id;
	bit(3) max_dependency_id;
	bit(3) max_temporal_id;
	bit(6) reserved = 0;
	bit(4) max_quality_id;
}
7	ROIindicationStatement: applies to a set of NAL units and gives IROI information.
class iroiStatementBody() {
	unsigned int(16) tierID;
	unsigned int(24) roi_id;
}
tierID specifies the tier the roi_id is defined in.
roi_id gives the ID of the ROI to which the NAL units pertaining to this statement belong.
8	scalabilityInfoStatement. This statement contains the header information from the matching NAL unit. The syntax is below, and the fields are as defined in ISO/IEC 14496-10 Annex G for NAL unit headers with NAL unit header SVC extension. The first byte is taken from the matching NAL unit, and the remaining bytes also if it is an SVC VCL NAL unit. If it is an AVC NAL unit, the remaining bytes are taken from the prefix NAL unit, if any, or else filled with zeroes.
class scalabilityInfoStatementBody() {
	bit (1)	forbidden_zero_bit;
	bit (2)	nal_ref_idc;
	bit (5)	nal_unit_type;
	bit (1)	reserved_zero_one_bit;
	bit (1)	idr_flag;
	bit (6)	priority_id;
	bit (1)	no_inter_layer_pred_flag;
	bit (3)	dependency_id;
	bit (4)	quality_id;
	bit (3)	temporal_id;
	bit (1)	use_ref_base_pic_flag;
	bit (1)	discardable_flag;
	bit (1)	output_flag;
	bit (2)	reserved_three_2bits;
}
9	temporalLayerSwitchingDistanceStatement. This statement provides a smaller value than that supplied in the group for tl_switching_distance for the tier, for switching points where the maximum value indicated in the tier is not needed.
class TLSwitchingDistanceStatementBody() {
	unsigned int(8) groupID;
	unsigned int(8) alt_tl_switching_distance;
}
alt_tl_switching_distance specifies a smaller value than tl_switching_distance in the group for the tier that applies to the target samples of the current statement.
10	priorityLayerStatement. This statement provides the priority layer to which the corresponding NAL unit(s) are mapped. Decoding can be performed at consistent quality by selecting the NAL units that are at, or below, a given priority layer. The body is a single 8-bit integer, the priority layer identifier. The characteristics of the priority layer are given in the optional SVCPriorityLayerInfoBox in the metadata sample entry.
class PriorityLayerStatementBody() {
	unsigned int(8) priorityLayer;
}
prorityLayer specifies the identifier of the priority layer the NAL unit(s) are mapped to. These identifiers shall be unique across the stream that is mapped to this metadata stream, i.e., a same value shall not be reused by NAL units with different dependency_id values.
Annex D [bookmark: _Toc117242366][bookmark: _Ref232066318][bookmark: _Ref232066422][bookmark: _Toc374356668][bookmark: _Toc232234514][bookmark: _Toc370303004][bookmark: _Toc370303304]
(normative)

File format toolsets
D.1 [bookmark: _Toc117242367][bookmark: _Toc370303005]Introduction
This Annex defines what constitutes tools, for the purposes of branding files containing AVC or SVC content. A specific brand may require some or all of the tools indicated here. A brand should be chosen that indicates the full level of support required, including any requirements on other specifications (e.g. support for aspects of the ISO base media file format specification, ISO/IEC 14496-12).
D.2 [bookmark: _Toc117242368][bookmark: _Toc370303006]SVC Toolsets
For all these toolsets the implementation of the SVC specific definitions from clause 6 are required.
The following toolsets are defined:
SVCExtractor: this toolset includes Extractors (Annex A).
SVCAggregator: this toolset includes Aggregators (Annex A).
SVCTiers: this toolset includes map/group/tier implementation (Annex B).
SVCTimedMetaData: this toolset includes the techniques from Annex C.
NOTE	The SVCTiers and the SVCTimedMetaData toolsets define descriptive tools; if the file reader does not need this information, these toolsets need not be implemented as the video data can be processed without them. Extractors and Aggregators, however, are in-stream structures and must be implemented under some circumstances to yield the correct video stream. A brand requiring SVCTiers or SVCTimedMetaData might also need to require SVCAggregator.
D.3 [bookmark: _Toc117242369][bookmark: _Toc370303007]MVC and MVD Toolsets
For all these toolsets the implementation of the MVC specific definitions, which also apply to MVD, from clause 7 are required.
The following toolsets are defined:
MVCExtractor: this toolset includes Extractors (Annex A).
MVCAggregator: this toolset includes Aggregators (Annex A).
MVCTiers: this toolset includes map/group/tier implementation (Annex B).
MVCTimedMetaData: this toolset includes the techniques from Annex C.
NOTE	The MVCTiers toolset defines descriptive tools; if the file reader does not need this information, this toolset need not be implemented as the video data can be processed without it. Extractors and Aggregators, however, are in-stream structures and must be implemented under some circumstances to yield the correct video stream. A brand requiring MVCTiers might also need to require MVCAggregator. [Ed. (AKR): Does the MVCTiers toolset also include MVCTimedMetaData?]
Annex E [bookmark: _Toc374356669][bookmark: _Toc374356670][bookmark: _Toc232234515][bookmark: _Toc370303008][bookmark: _Toc370303305]
(normative)

Sub-parameters for the MIME type ‘Codecs’ parameter
E.1 [bookmark: _Toc370303009]Introduction
When the ‘codecs’ parameter of a MIME type is used, as defined in RFC 6381, the following clauses document the sub-parameters when the MIME type identifies a file format of this family and the ‘codecs’ parameter starts with a sample-entry code from this specification.
E.2 [bookmark: _Toc370303010]AVC Family
When the first element of a value is a code indicating a codec from the Advanced Video Coding specification (ISO/IEC 14496-10), as documented in clauses 5, 6 or 7, such as 'avc1', 'avc2', 'avc3', 'avc4', 'svc1', 'svc2', 'mvc1', 'mvc2', 'mvc3', and 'mvc4') - indicating AVC (H.264), Scalable Video Coding (SVC) or Multiview Video Coding (MVC), the second element (referred to as 'avcoti' in the formal syntax) is the hexadecimal representation of the following three bytes in the (subset) sequence parameter set NAL unit specified in ISO/IEC 14496-10:
· profile_idc
· the byte containing the constraint_set flags (currently constraint_set0_flag through constraint_set5_flag, and the reserved_zero_2bits)
· level_idc
Note that the sample entries 'avc1', 'avc2', 'avc3', and 'avc4' do not necessarily indicate that the media only contains AVC NAL units. In fact, the media may be encoded as an SVC or MVC profile and thus contain SVC or MVC NAL units. In order to be able to determine which codec is used further information is necessary (profile_idc). Note also that reserved_zero_2bits is required to be equal to 0 in ISO/IEC 14496-10, but other values for it may be specified in the future by ITU-T | ISO/IEC.
When SVC or MVC content is coded in an AVC-compatible fashion, the sample description may include both an AVC configuration record and an SVC or MVC configuration record. Under those circumstances, it is recommended that the two configuration records both be reported as they may contain different AVC profile, level, and compatibility indicator values. Thus the codecs reported would include the sample description code (e.g. 'avc1') twice, with the values from one of the configuration records forming the 'avcoti' information in each.
Note – This section is a superset of the text in RFC 6381, which is as previously defined in the 3GPP File Format specification 3GPP TS 26.244, section A.2.2. If sample entries 'avc3', 'avc4', 'svc2', 'mvc3' and 'mvc4' were not included, the section would be identical to the text in RFC 6381.
The relevant BNF syntax in RFC 6381 is as follows:
iso-avc := avc1 / avc2 / svc1 / mvc1 / mvc2 ["." avcoti]
avc1 := %x61.76.63.31 ; 'avc1'
avc2 := %x61.76.63.32 ; 'avc2'
svc1 := %x73.76.63.31 ; 'svc1'
mvc1 := %x6d.76.63.31 ; 'mvc1'
mvc2 := %x6d.76.63.32 ; 'mvc2'
avcoti := 6(DIGIT / "A" / "B" / "C" / "D" / "E" / "F")
 ; leading "0x" omitted
E.3 [bookmark: _Toc370303011]HEVC
When the first element of a value is a code indicating a codec from the High Efficiency Video Coding specification (ISO/IEC 23008-2), as documented in clause 8 (such as 'hev1' or 'hvc1'), the elements following are a series of values from the HEVC decoder configuration record, separated by period characters (“.”). In all numeric encodings, leading zeroes may be omitted,
· the general_profile_space, encoded as no character (general_profile_space == 0), or ‘A’, ‘B’, ‘C’ for general_profile_space 1, 2, 3, followed by the general_profile_idc encoded as a decimal number;
· the general_profile_compatibility_flags, encoded in hexadecimal (leading zeroes may be omitted);
· the general_tier_flag, encoded as ‘L’ (general_tier_flag==0) or ‘H’ (general_tier_flag==1), followed by the general_level_idc, encoded as a decimal number;
· each of the 6 bytes of the constraint flags, starting from the byte containing the general_progressive_source_flag, each encoded as a hexadecimal number, and the encoding of each byte separated by a period; trailing bytes that are zero may be omitted.
Examples:
codecs=hev1.1.2.L93.B0
a progressive, non-packed stream, Main Profile, Main Tier, Level 3.1. (Only one byte of flags is given here).
codecs=hev1.A4.41.H120.B0.23
a (mythical) progressive, non-packed stream in profile space 1, with general_profile_idc 4, some compatibility flags set, and in High tier at Level 4 and two bytes of constraint flags supplied.

	Error! Reference source not found.
	2

	14
	Error! Reference source not found.

	Error! Reference source not found.
	13

image1.emf

L

en
gt

h
Access
Unit

Delimiter
NAL Unit
(if present) L

en
gt

h

SEI

NAL Unit
(if present)

L
en

gt
h

Slice
NAL Unit
(Primary

Coded
Picture) L

en
gt

h

Slice
NAL Unit

(Redundant
Coded Picture)

(if present)

L

e

n

g

t

h

Access

Unit

Delimiter

NAL Unit

(if present)

L

e

n

g

t

h

SEI

NAL Unit

(if present)

L

e

n

g

t

h

Slice

NAL Unit

(Primary

Coded

Picture)

L

e

n

g

t

h

Slice

NAL Unit

(Redundant

Coded Picture)

(if present)

image2.emf

AU Delimiter

NAL unit
(if present)

SEI Messages
NAL units
(if present)

VCL
NAL units.
e.g. Slice

NAL

Access Unit

AU Delimiter

NAL unit

(if present)

SEI Messages

NAL units

(if present)

VCL

NAL units.

e.g. Slice

NAL

Access Unit

image3.emf

Video
ES

Parameter
Set ES

Slice
NALU

Slice
NALU

Param
NALU

Video

ES

Parameter

Set ES

Slice

NALU

Slice

NALU

Param

NALU

image4.emf

P 21 P 22 P 23 P 24 P 25

P 11 P 12 P 13 P 14 P 15

S 3

Stream 2
(Track 2)

Stream 1
(Track 1)

P

21

P

22

P

23

P

24

P

25

P

11

P

12

P

13

P

14

P

15

S

3

Stream 2

(Track 2)

Stream 1

(Track 1)

image5.emf
N

A

L

u

N

A

L

u

N

A

L

u

N

A

L

u

N

A

L

u

sample

4 2 3 1 5

m

e

t

a

d

a

t

a

m

e

t

a

d

a

t

a

m

e

t

a

d

a

t

a

m

e

t

a

d

a

t

a

m

e

t

a

d

a

t

a

1 5 4 2

3

sample

