
From Docker Compose to Kubernetes
with Podman
Use Podman 3.0 to convert Docker Compose YAML to a format
Podman recognizes.

Posted:
January 26, 2021
|
Brent Baude (Red Hat), Urvashi Mohnani (Red Hat)

Photo by Pok Rie from Pexels

The Docker Compose tool has been valuable for many people who have been working with
containers. According to the documentation, Docker Compose describes itself as:

... a tool for defining and running multi-container applications. With Compose, you
use a YAML file to configure your application's services. Then, with a single
command, you create and start all the services from your configuration.

One challenge with Docker Compose is that the YAML file format only works with the Docker
engine. While you can give it to other Docker users for local replication, they cannot use it
with other container runtimes. That is, until now.

[Related tutorial: Using Podman and Docker Compose]

Search

https://www.redhat.com/sysadmin/users/brent-baude
https://www.redhat.com/sysadmin/users/umohnani
https://www.pexels.com/@pok-rie-33563?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels
https://www.pexels.com/photo/seaport-during-daytime-132037/?utm_content=attributionCopyText&utm_medium=referral&utm_source=pexels
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.redhat.com/sysadmin/podman-docker-compose
https://www.redhat.com/

With Podman 3.0, the Docker Compose works with a Podman
backend
The real power of Podman shines through by easily converting the containers based on
Docker Compose to a Kubernetes YAML file. Like Docker Compose, Podman can use the
Kubernetes YAML file to replicate the containers locally. More importantly, this allows
Podman to have an orchestrated pod and service that can be run on many platforms,
including Kubernetes/OpenShift or minikube.

This article explains the process of starting with a simple Compose file that runs WordPress
using two containers. The source for this Compose file is published on GitHub in Docker's
awesome-compose repository. Successful use of this file with Podman results in the
WordPress initial setup screen appearing in a browser.

Note: At the time of this writing, we only support the docker-compose command running
rootfully.

Start Podman's system service
To use Compose, the first step is to make sure that all the required packages are installed and
then to set up the Podman (3.0 or greater) system service using systemd. After installing
packages, enable and start the Podman systemd socket-activated service using the following
command:

Verify the service is running by hitting the ping endpoint. This step needs to be successful
before proceeding further.

Kubernetes and
OpenShift

Free cheatsheet: Kubernetes
and Minikube

Free ebook: Designing Cloud-
Native Applications

Interactive course: Getting
Started with OpenShift

Free ebook: Build Applications
with Kubernetes and Openshift

$ sudo systemctl enable --now podman.socket

$ sudo curl -H "Content-Type: application/json" --unix-socket
/var/run/docker.sock http://localhost/_ping

OK

https://podman.io/
https://github.com/docker/awesome-compose/tree/master/wordpress-mysql
https://developers.redhat.com/cheat-sheets/kubernetes?intcmp=7013a0000026EKuAAM
https://developers.redhat.com/books/kubernetes-patterns?intcmp=7013a0000026EKuAAM
https://developers.redhat.com/courses/openshift/getting-started?intcmp=7013a0000026EKuAAM
https://developers.redhat.com/books/knative-cookbook?intcmp=7013a0000026EKuAAM

You can now confidently run Compose knowing the RESTful API is working.

Run Compose
As mentioned earlier, the example will run a Compose file consisting of two containers to
bring up a WordPress session. One container runs an Apache web service, and the other
stores the data in a MySQL database. The two containers communicate via TCP/IP over a
network dedicated to this Compose instance. To bring up the containers, run docker-
compose up.

Use the podman ps command to verify that two containers have been created and are now
running. No Docker daemon was necessary.

Verify WordPress is running locally
The instructions for running WordPress indicate that it is working correctly and it can be
accessed using the localhost and port 80.

$ sudo docker-compose up -d

Creating network "wordpress-mysql_default" with the default driver

Creating volume "wordpress-mysql_db_data" with default driver

Pulling db (mysql:8.0.19)...

0c27e8e5fcfab7805cfed996b55e5e98f43fd7ee76e1516f20cba139c6a299c5: pulling image
() from docker.io/library/mysql:8.0.19

Pulling wordpress (wordpress:latest)...

0d35c2300ec845fda141ba012f7c6dccde8f0ae106b8f4bb0fcfced69380f851: pulling image
() from docker.io/library/wordpress:latest

Creating wordpress-mysql_db_1 ... done

Creating wordpress-mysql_wordpress_1 ... done

$ sudo podman ps

CONTAINER ID IMAGE COMMAND CREATED
 STATUS PORTS NAMES

a089a40bb9ae docker.io/library/mysql:8.0.19 --default-authent... 15
seconds ago Up 15 seconds ago kind_hermann

510c028c273f docker.io/library/wordpress:latest apache2-foregroun... 15
seconds ago Up 15 seconds ago 0.0.0.0:80->80/tcp competent_kilby

$

Create the Kubernetes YAML
With a working instance of WordPress on the local machine, begin the process of replicating
these containers on a Kubernetes platform. Podman can generate Kubernetes-based YAML
from running containers.

[You might also like to read: Start learning Kubernetes from your local machine]

One pod or multiple pods?
There are two approaches for creating the YAML you will use in the Kubernetes environment:
Either put two containers in a single pod with a service, or create two pods, with one container
in each, and a service to expose the Apache front end. Determining which approach is best
may require some trial and error.

One consideration that may dictate which approach to use is how the containers or pods will
communicate. When Compose created these containers, it went through a series of steps to
ensure that the two containers could communicate with each other using DNS names. In fact,

https://www.redhat.com/sysadmin/start-learning-kubernetes

Compose set up aliases on the containers that are recognized as DNS names when resolving

containers by name. By putting the containers inside the same pod, there is no need for name
resolution between them because they share a network namespace. Therefore, they can
simply use localhost to communicate with each other.

Placing the containers in different Kubernetes pods gives better flexibility, but the containers
will need to communicate with each other using some other mechanism.

Generate the YAML
You must know the container names or IDs to begin creating the Kubernetes YAML. Decide
whether Podman should generate a service description for Kubernetes. In this case, expose
the Apache front end so that it can interact with WordPress using the browser. Use the
podman generate kube command to create YAML files.

The -s in the previous command signifies that Podman will generate service for this pod. The
-f option allows us to save the generated YAML into a file. Otherwise, the output is sent to
stdout, where it can be redirected to a file.

More about automation
An introduction to Ansible

3 ways to try Ansible Tower free

Free Ansible e-books

Getting started with network
automation

$ sudo podman generate kube -s -f wordpress.yaml a089a40bb9ae 510c028c273f

https://www.ansible.com/resources/get-started?intcmp=701f20000012ngPAAQ
https://www.ansible.com/products/tower/trial?intcmp=701f20000012ngPAAQ
https://www.ansible.com/resources/ebooks?intcmp=701f2000000h4RcAAI
https://www.redhat.com/en/engage/technical-ansible-network-s-201903140421?intcmp=701f2000000h4RcAAI

$ cat wordpress.yaml

Save the output of this file and use kubectl create -f to import

it into Kubernetes.

#

Created with podman-3.0.0-dev

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: "2020-12-03T22:30:07Z"

 labels:

 app: kindhermann

 name: kindhermann

spec:

 containers:

 - command:

 - docker-entrypoint.sh

 - --default-authentication-plugin=mysql_native_password

 env:

 - name: PATH

 value: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 ...

 workingDir: /

 - command:

 - docker-entrypoint.sh

 - apache2-foreground

 env:

 - name: PATH

 value: /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

 ...

 - name: WORDPRESS_DB_HOST

 value: kindhermann

 - name: WORDPRESS_DB_PASSWORD

 value: db

 - name: APACHE_ENVVARS

 value: /etc/apache2/envvars

 ...

 image: docker.io/library/wordpress:latest

 name: competentkilby

 ports:

 - containerPort: 80

 hostPort: 80

 protocol: TCP

 resources: {}

 securityContext:

 allowPrivilegeEscalation: true

 capabilities:

 drop:

 - CAP_MKNOD

 - CAP_NET_RAW

 privileged: false

 readOnlyRootFilesystem: false

 seLinuxOptions: {}

 workingDir: /var/www/html

status: {}

In order for the Apache container to communicate with the MySQL container, the author of
the Compose file has opted to use an environment variable named WORDPRESS_DB_HOST
to signify the hostname of the MySQL container. Before running this in a Kubernetes
environment, change the value of WORDPRESS_DB_HOST to the MySQL container name
(kindhermann in this example) or 127.0.0.1 (containers within the same pod can communicate
with each other over localhost).

SideBar:

When Compose performs a build
In many Compose examples, the author chooses to build their container image. This is usually
because they require additional packages or want to perform some level of customization in
the image. When this occurs, there will be an additional new image in Podman's image store.
Choosing to run the outputted Kubernetes YAML might fail because it references a container
image that is only present in the local store.

To remedy this, use podman push to move these new images to either a global registry like
quay.io or a Kubernetes-specific registry so that Kubernetes can pull these images. Ensure
the image name in the resulting YAML file is the same as the image that was pushed.

Kubernetes

apiVersion: v1

kind: Service

metadata:

 creationTimestamp: "2020-12-03T22:30:07Z"

 labels:

 app: kindhermann

 name: kindhermann

spec:

 ports:

 - name: "80"

 nodePort: 30579

 port: 80

 protocol: TCP

 targetPort: 0

 selector:

 app: kindhermann

 type: NodePort

status:

 loadBalancer: {}

...

 - name: WORDPRESS_DB_HOST

 value: kindhermann OR 127.0.0.1

The next step in carrying this example forward and applying it to a Kubernetes environment
will show how to run this example on both minikube and OpenShift. There is nothing specific
in the YAML that prevents the pods from running in another Kubernetes environment, so it
should theoretically work with other Kubernetes flavors.

This article assumes the existence of a minikube and/or OpenShift environment. It is out of
scope for this article to document the setup of a minikube or OpenShift Kubernetes
environment.

minikube
The first step to deploying on minikube is simply to create the pod.

After waiting a few seconds, check the status of the pod and containers. Depending on the
speed and network bandwidth, the pod may already be available. Check the status of the pod
using kubectl get pods.

Now that both containers are ready, test the availability of the WordPress session. First, get
the IP address of the pod in Kubernetes using kubectl.

Point your browser of choice to the pod's IP address and see the WordPress setup screen.

$ minikube kubectl -- create -f wordpress.yaml

pod/kindhermann created

service/kindhermann created

$ minikube kubectl -- get pods

NAME READY STATUS RESTARTS AGE

kindhermann 2/2 Running 0 28

$ minikube kubectl -- describe pods | grep Node:

Node: minikube/192.168.39.7

https://minikube.sigs.k8s.io/docs/

OpenShift
For this article, an OpenShift cluster is running on GCP.

Use the generated wordpress.yaml to create the pod and service. If using a vanilla
Kubernetes environment, replace oc with kubectl in the following commands.

Wait a few seconds for the pod and service to come up. The kindhermann pod is in Running
status with both containers up and running. The kindhermann service is also available with a
cluster IP assigned to it.

$ oc create -f wordpress.yaml

pod/kindhermann created

service/kindhermann created

View the pod and service in the console.

$ oc get pods

NAME READY STATUS RESTARTS AGE

kindhermann 2/2 Running 0 39s

$ oc get services

NAME TYPE CLUSTER-IP EXTERNAL-IP
 PORT(S) AGE

kindhermann NodePort 172.30.103.100 <none>
 80:30579/TCP 45s

Kubernetes ClusterIP 172.30.0.1 <none>
 443/TCP 44m

openshift ExternalName <none>
 Kubernetes.default.svc.cluster.local <none> 36m

To access the service from outside of the cluster, expose it, which will create a route.

Exposing the service created the host/port route shown above and access that endpoint.
View the setup page of the WordPress application running in the OpenShift or Kubernetes
cluster.

$ oc expose svc/kindhermann

route.route.openshift.io/kindhermann exposed

$ oc/kubectl get routes

NAME HOST/PORT
 PATH SERVICES PORT TERMINATION WILDCARD

kindhermann kindhermann-default.apps.ci-ln-d3gw292-f76d1.origin-ci-int-
gce.dev.openshift.com kindhermann 80 None

Examine the route in the console and directly access the endpoint from there as well.

[Get this free ebook: Managing your Kubernetes clusters for dummies.]

Wrap up
As you can see, moving workload configurations from Docker Compose environments to
Kubernetes is straightforward with Podman 3.0. Podman not only gives the flexibility of
Docker Compose while developing applications, but it also makes the move to Kubernetes
easier when applications are ready for the big leagues. It does all this by using the podman
generate kube command. Try it out yourself in three simple steps.

Check out these related articles on Enable Sysadmin

https://www.redhat.com/en/resources/managing-kubernetes-clusters-dummies-ebook?intcmp=7013a0000026EKuAAM

Using Podman and Docker
Compose

Podman 3.0 now supports Docker
Compose to orchestrate containers.

Posted:
January 7, 2021
Author:
Brent Baude (Red Hat)

Leasing routable IP addresses
with Podman containers

Container networking doesn't have to be
overly complicated. Learn how to let your
container lease an IP from DHCP here.

Posted:
November 12, 2019
Author:
Brent Baude (Red Hat)

A sysadmin's guide to basic
Kubernetes components

Kubernetes control plane nodes and worker
nodes, their features, and how they interact.

Posted:
December 1, 2020
Author:
Shashank Nandishwar Hegde (Red Hat,
Sudoer)

https://www.redhat.com/sysadmin/podman-docker-compose
https://www.redhat.com/sysadmin/users/brent-baude
https://www.redhat.com/sysadmin/leasing-ips-podman
https://www.redhat.com/sysadmin/users/brent-baude
https://www.redhat.com/sysadmin/kubernetes-components
https://www.redhat.com/sysadmin/users/shashank-hegde

Topics:
 Linux
 Containers
 Kubernetes

On Demand: Red Hat Summit 2021 Virtual Experience
Relive our April event with demos, keynotes, and technical sessions from

experts, and sign up to attend breakout sessions June 15–16.

Register Now

Related Content

Brent Baude
Brent is a Principle Software Engineer at Red Hat and leads the
Container Runtimes team which
includes things like Podman and Buildah.
He is a maintainer of Podman upstream and a major
contributor as well.
More about me

Urvashi Mohnani
Urvashi Mohnani is a senior software engineer at Red Hat on the Container Runtimes team. She
has spent the past few years developing emerging open source container technologies such as
CRI-O, Buildah, and Podman and presenting on the latest developments in the space.
More about
me

Enable Sysadmin's May 2021 top
10 Linux article round-up
Check out our ten most-read articles from the
month of May

Posted:
June 2, 2021
Author:
Tyler Carrigan (Red Hat)

New container feature: Volatile
overlay mounts
With containers, we don't always care about
data being retained after a crash. See how
volatile overlay mounts can help increase
performance in these situations.

Posted:
June 3, 2021
Author:
Dan Walsh (Red Hat)

A beginner's guide to creating
di t i ht fil

https://www.redhat.com/sysadmin/topics/linux
https://www.redhat.com/sysadmin/topics/containers
https://www.redhat.com/sysadmin/topics/kubernetes
https://www.redhat.com/en/summit?intcmp=7013a0000026RhqAAE
https://www.redhat.com/sysadmin/users/brent-baude
https://www.redhat.com/sysadmin/users/umohnani
https://www.redhat.com/sysadmin/enable-sysadmins-may-2021-top-10-linux-article-round
https://www.redhat.com/sysadmin/users/tcarriga
https://www.redhat.com/sysadmin/container-volatile-overlay-mounts
https://www.redhat.com/sysadmin/users/dwalsh
https://www.redhat.com/sysadmin/beginners-guide-redirects-htaccess

OUR BEST CONTENT, DELIVERED TO YOUR INBOX

Enter your email address...

Select your country or region

Subscribe

Privacy Statement

The opinions expressed on this website are those of each author, not of the author's employer or of Red Hat. The content published
on this site are community contributions and are for informational purpose only AND ARE NOT, AND ARE NOT INTENDED TO BE,
RED HAT DOCUMENTATION, SUPPORT, OR ADVICE.

Red Hat and the Red Hat logo are trademarks of Red Hat, Inc., registered in the United States and other countries.

Copyright ©2020 Red Hat,
Inc.

Privacy Policy | Terms of Use
| All policies and guidelines

redirects in an .htaccess file

Use the .htaccess file to manage web sites on
shared web hosting platforms.
Posted:
June 9, 2021
Author:
Abdul Rehman

https://www.redhat.com/footer/privacy-policy.html
https://www.redhat.com/
https://www.redhat.com/en/about/privacy-policy
https://www.redhat.com/en/about/terms-use
https://www.redhat.com/en/about/all-policies-guidelines
https://www.redhat.com/en/summit?intcmp=7013a0000026RhqAAE
https://www.redhat.com/sysadmin/beginners-guide-redirects-htaccess
https://www.redhat.com/sysadmin/users/abdul-rehman

